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What is a covariant derivative?
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Abstract. A slight change of emphasis, from geometry towards local symmetry,
provides a better framework for the formulation of gauge theories of the gravi-
tational type. General Relativity no longer requires any improvisation, whether
the local algebra is based on Poincaré or on De Sitter, Application to the graded
super Minkowski manifold, with local algebra based on the super Poincaré algebra,
leads to an action principle. The torsion constraints are obtained by straightforward
variation of the action. The comparison with component supergravity has not yet
been completed, but preliminary indications strongly indicate a close relationship.
Local symmetry of the action principle is maintained, the structure is field indepen-
dent, and the torsion constraints also preserve the local symmetry algebra. The
coupling to matter shows that these constraints are necessary for the exclusion
of ghosts from the matter sector.

1. INTRODUCTION

The concept of «gauge theories» has become dominant in physics, but is it
well defined? Before attempting to answer this question, let us think about
whether it is worth the trouble. Certainly, one may consider the many brilliant
successes already obtained in the field as proof positive that the foundations
are solid, that the path to discovery matters but little after the fact. With this
we do not wish to quarrel; instead, we want to emphasize that, actually, success
has been anything but complete. The purpose to which we shall discuss the
structure of gauge theories is constructive, and the aim is to attack real problems.
In order to attempt to engage the interest of the reader it would be best to lay
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before him, immediately. some concrete results. to show that a review of the
methodology of gauge theories can bring tangible dividends. But it is necessary
first to define the problem.

The greatest success story of recent times is without any doubt the prediction
of the existence and the masses of the electroweak mesons [1]. One of the main
ideas behind this theory was the requirement of internal consistency. more
precisely. renormalizability [2]. It embodies a principle that appears to be of
great importance: renormalizability is much enhanced by symmetry. exact or
very carefully broken. This same principle animated. to a great extent. early
interest in supersymmetry. There is no doubt that supersymmetric theories
are more finite [3]. but what counts is renormalizability. not finiteness. Great
hope¢ was attached to the prospect that super-gravity might provide a consistent
quantum gravity. but here success has been only partial [4}]: in other words.
as long as that situation remains, negligible. And vet. it seems to us. it is too
early to write off supergravity.

Supergravity was never given a real chance to realize its potential. The high
hopes were based on the exploitation of symmetry, but the symmetry of supergra-
vity must first be fully implemented. As was first predicted by Dirac, renorma-
lization of electrodynamic was achieved only within a formulation with manifest
Poincaré symmetry. In quantum mechanics it is well known that a formal symme-
try of the hamiltonian does not imply degeneracy of the spectrum: one knows
well the relevance of domains and integrability for a symmetry to be of conse-
quence. In quantum field theory such insight is lacking, but one would surely
do well to be careful when trying to draw inference from the «symmetry» of
supergravity. First of all, integrability. so important in the quantum mechanical
context. is certainly not provable: one has to be content with an invariance
algebra rather than an invariance group. But worse than that. the «algebra»
is not defined. for it does not have a structure independently of its realizations.
(The «structure tensor» depends on the dynamical fields). The search for u
superspace formulation of supergravity was undertaken (or could at least be
justified this way) to improve the theory in this respect. It is fully recognized.
after all, that the vaunted properties of super Yang-Mills theories cannot be
established without a superspace formulation that is free of constraints.

The first superspace formulation of supergravity was achieved by Wess and
Zumino [5]. it was a real tour de force of hard work and brilliant improvisation.
But their theory does not satisfy the demands that one must put on it if one
would advance the hopes of a renormalizable version of supergravity. There
is a stage, before the imposition of constraints, where one can speak of a local
svmmetry algebra (the good one?). But at this level one does not have an action
principle. The constraints are no doubt important, but they are not derived
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from an action. They have to be introduced from outside, and they leave us
with a theory that shares the drawbacks of the original component formulation.
Another monumental effort, by Arnowitt and Nath [6], showed a lot of promise:
it was eventually abandoned without having been fully developed, for reasons
that are not too clear. Finally, Ogievetsky and Sokatchev have developed a very
original approach [7], perhaps the most aesthetic one so far, marred, nevertheless,
by the same imperfections as the theory of Wess and Zumino [5].

In view of this state of affairs, the question of renormalizability of supergra-
vity must be regarded as being still open. It will probably remain open at least
until one shall have a formulation in which all the constraints are derived from
an action principle that is invariant under an appropriate local algebra. It appears
as if our investigation into the structure of gauge theories has led us to such a
formulation. This paper presents an action principle, invariant under a local
super Poincaré algebra (field independent structure!), from which a weakened
form of the Wess-Zumino torsion constraints follows automatically. 1t admits
flat superspace as an exact solution. A preliminary investigation of matter
couplings (in a formulation in which all constraints come from the action prin-
ciple) gives strong support for our belief that this theory is the required extension
of supergravity, but a proof is not yet at hand.

Gauge theory is a framework for the construction of dynamical field theories,
especially new theories. Many attempts have been made to use it effectively,
to further the understanding of gravity. to invent conformal gravity. to formu-
late supergravity, to limit ourselves to the gravitational context. Still, it is by
no means agreed by one and all that General Relativity is a gauge theory in the
sense that Yang-Mills theories are gauge theories. Among the partisans of the
view that Einstein’s theory is a gauge theory there is no general agreement about
the correct choice of gauge group. This being the case, it is clear that General
Relativity cannot (yet) serve as a paradigm for the invention of new theories.
Too much play is left for improvisation. Section 2 of this paper attempts to
improve this situation. Here we shall review first, the applications that shall
be carried out in the later sections, and subsequently, the general framework
that has been formulated in Section 2.

Section 3 deals with ordinary gravity. The gauge algebra is local Poincaré;
attempts to use only the Lorentz algebra do not succeed. for reasons that are
discussed. The framework of Section 2 is applied. here as in the other cases,
without the slightest improvisation. General Relativity is, in our opinion, the
gauge theory par excellence. The approach used here completely solves {avoids)
the perennial confusion between vierbein and connection coefficients. Section
4 is entitled De Sitter gravity. for the gauge algebra is local De Sitter. The algo-
rithm works just as well in this case, and the result is again General Relativity.
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Differences between Poincaré gravity and De Sitter gravity appear only in the
case of coupling to spinors.

Section 5 applies exactly the same procedure to the case of the Poincure
super algebra. Superspace and «tangents space are. as usual. of graded dimen-
ston 4+ + 4. In line with the general ideas explained in Section 2. we allow the
super translations. and not just the Lorentz transformations. to act nontrivially
on tangent space. This is crucial because the special limiting case in which they
do nor act is characterized by an ambiguity that obtuscates the correct choice
of the action. The invariantly contracted curvature tensor contains only onc
half of the o4 achtbein coefficients. and one half of the connection coetiicionts
enter only algebraically . This explains why the torsion constraints appear natural-
Iv and automatically. as buler-Lagrange equations. These constraints Jdo not
violate local supersvimmetry: they are slightly weaker than those of Wess and
Zumino [3]. In Section 6 we establish the fixed point of flat space supersyimmetrs
We have not vet completed the reduction of the action to component language.
Our belief that the theorv is an extension of supergravity s based mosthy on
the developments ot the last sections.

Section 7 deals with the minimal coupling of supergravity to muatter Ouw
description of super-svimmetric matter difters trom the traditional one and
needs to be explained. The usual approach. as developed by Wess and Zunmino |5
and by Salam and Strathdee [9]. deals with chiral superticlds. This method has
proved its mettle in many successtul applications. including supergravity and
super Yang-Mills [10. 11} Nevertheless, we still harbor some reservations about
it. First of all. the superfield action of the Wess-Zumino multiplet is an alvebrun
expression. vontaiming no derivatives ot the superfield. s s explained o
the fuct that the chiral superfield satisfies differential constraints. the space
time dervatives are hidden i the expressions for the components. winch scans
ol course. that the action 1s 1o be varied subject to these constramnts. b other
words. this approach to superspace field theory is very difterent from the tradi
tional methods developed tor ordinary field theories. In fuct. differential con
straints are banned there. for very good reasons. Our poimt ol view 15 consisten
with that advanced ubove, in connection with supergravity . [ must be admitted
however. that an aesthetic prejudice constitutes much of vur motivation to asotd
the introduction of « priori constraints of anyv type. and chirality constramits
in particular | 1.2}

[he free tield equations for the unconstrained. scalar supertield can be derived
from un action that looks very much like that of an ordinary scalur ticld. The
ficld equations mclude all the constraints. which is satisfyving but also dangerous
[nteractions. especiatly those that involve derivatives. tond to destrov the oo

straints and  thus increase the number of degrees of frecdom This threatens
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he unitarity of the theory, which is why one may justificably refer to the new
tates as ghosts. One is especially vulnerable to the appearance of ghosts in the
:ase of interest, for the minimal supergravitational interaction contains just as
nany derivatives as the free action. It is a remarkable fact that the torsion con-
traints derived from variation of the super-gravity connection, that remain
inchanged by the coupling to the scalar matter superfield, seem to be exactly
vhat is needed to avoid ghosts in the matter sector, though they are weaker than
‘he constraints of Wess and Zumino [5]. This circumstance makes us feel rather
»ositive about prospects for developing a sensible theory. and that is why we
selieve that supergravity is included correctly.

It remains to explain what is new in the general framework that has been
set up in Section 2, from which everything follows. At first sight, not much.
We choose a Lie algebra g. of finite dimension, a manifold M, and introduce
the local algebra lg, as usual. We insist that g acts on M; if this action is trivial,
then one has a gauge theory of the Yang-Mills type, a very special case. We are
mostly interested in the opposite case. when the action of g is effective, by
which we mean that the vector fields of g span the tangent space of M at each
point In that case the action of 1g on the space M (but not on the fields) reduces
to the infinitesimal diffeomorphisms. and diff(M) thus appears through a natural
homomorphism. This unambiguous appearance of diff(M) is not completely
new, but it is as important as it is unusual. Notice that diff(M) invariance comes
about automatically, it is not a postulate: we are not partisans of a «pure geo-
metrical» point of view. This independence of received geometrical notions
is particularly in evidence when it comes to the next step, which is the definition
of the covariant derivative. We insist that all fields of interest be g-modules;
it follows that the covariant derivative operates between g-modules. This principle
is sufficient to determine the transformation properties of connection, vielbein
coefficients, curvature and torsion under lg, which constitutes an important
departure from those approaches in which the vielbein is introduced as an extra
ad hoc element. It also leads to the two identities (2.30) and (2.31). These iden-
tities are very important, as we try to make clear especially in the application
to Poincaré gravity. Other ambiguities remain: the choice of g, of M, and of
tangent space. The scalar curvature serves as invariant Lagrangian in some of
the most important cases, but not always. There is no general principle that
can tell us the correct choice of the action.

The matter of choosing a tangent space deserves some comment. The usual,
four-dimensional tangent space used for ordinary gravity is natural from every
point of view, so this example is not much help in deciding what it is that matters
most. We do insist that tangent space must be a g-module, and such as to allow
for the existence of aninvariant curvature scalar (which rules out trivial g-modules).
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This may lead to difficulties with dimension. unless one is willing to accept that
the matrix of vielbein coefficients may be rectangular (not square). Thus, in
conformal gravity. the dimension of tangent space exceeds that of the manifold,
since the lowest dimension of a real, non-trivial representation of the conformal
group is six. The reverse case is even more interesting. In supergravity it has been
customary to use an eight-dimensional super manifold and an eight-dimensional
tangent space. That is how we start out also. but the analysis ends up with &
four-dimensional spinorial tangent space. It turns out that this deficiency in the
dimension of tangent space is responsable for the torsion constraints. Some pre-
liminary reflections on this idea are offered in Section 8.

2. GENERAL STRUCTURE

Let M be a differentiable manifold and g a Lie algebra. Let (£ ), -1 =1... .. H
be a basis for ¢ and suppose that g acts in M by differentiable vector fields («or-
bital» action).

QA —>MA‘ A=1 ... .

If 1" is any vector space. let & (M, }) denote the space of differentiable func-
tions from M to V. If I is a g-module. in which g acts by matrices

Li=Sy0 A=1..... 1.
then g actsin #(M. V) by the operators («orbital » plus «spin » action)
¢, >L, =M, +S,:
hence % (M, V) is a g-module.
Let F be any g-module, and let Vg be g considered only as a vector space.

on which g acts by the adjoint representation. The space [g(}") of operators
in (M. V) of the form

AL=AL, ANEFMT )
is a Lie algebra. If V is a faithful g-module. then the structure relations
(A" L, A-L]=A""1L
are independent of 1" and take the form (C is the structure tensor of g)
(2.1) A"C = AABC, O EAC —ENC

=AM

' 4
Lo E=AAM,.

DEFINITION (2.2). The local algebra g is the space F(M, l'u ) with the structure
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of Lie algebra defined by Eq.(2.1) [13].

If V is a g-module, faithfull or not, then % (M, V) is an lg-module, and the
action of g in this space defines a homomorphism from ¢ to some sub-quotient
Lg(V). If V is a trivial g-module, then {g(V) is a subalgebra of the Lie algebra
diffiM) of differentiable vector fields on M. We shall here suppose that g acts
effectively in M; that is, that (MA), A =1....,n, evaluated at x € M spans
the tangent space at x. Then Ig(V) = diff(M) whenever g acts trivially on V.
To be precise, one has the homomorphism

(2.3) T:1g—>diff(M), A—=ft=A M

There is a good reason for insisting on this intimate connection between the
local algebra and the diffeomorphism algebra, for it makes the interpretation
of General Relativity as a gauge theory completely natural. Here we are in empha-
tic disagreement with much of the literature, and especially with proposals to
look at lg and diff(M) as independent ingredients of the theory.

Later we shall have occasion to introduce the subalgebrasl g defined by

4 _
(2.4) M, A" =0.

One easily verifies that this does in fact define a subalgebra of lg

The local algebra also acts on world tensor fields over M. Let M, V be as above,
and letZ(M, V) be the space of differentiable tensor fields over M, valued in V.
This is an |g-module with the natural action

2.5 A2 =LH+A-S

Here £ is the vector field defined in (2.1), and.A¥) is the ordinary Lie derivative
associated with &. The operator Qj\ in 7(M, V) will be called the Lie derivative
associated with A. If V is a trivial g-module, then (M, V) reduces to the usual
tensorial diff(M) module.

For fixed g and M we now turn to the problem of defining a covariant deriva-
tive. It seems natural to interpret the local algebra lg as a bundle over diff(M).
with bundle projection 7 defined by Eq. (2.3). Avoiding the difficult problem
of introducing topologies on these spaces. we propose

DEFINITION (2.6). A “connection one-form” is a section of the homomorphism
(2.3) that is, a map U:diff(M) = Lg such that 7 o ' is the identity map:

diffM) 3 £ ->T(¢) € lg.

(mo)(§)=¢

This notion will be relevant and useful, but we shall nevertheless reserve the

2.7
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name «connection» for a slightly different object. Note that (2.7) is a nontrivial
constraint on the coefficients:see Eq. (2.31) below.

To define a covariant derivative we must fix, besides g and M, a «tangent
space», so called for quaint historical reasons [14]. From now on 17 will denote
a fixed. finite-dimensional g-module. We insist that this « tangent space» must

be a g-module.

DEFINITION (2.8). 4 «connection» is a differentiable function M — o 1

d

¢ = ((bQA ), w=1..... d: A=1...., .

where d is the dimension of 1.

A connection defines. for each g-module V. a map from the space of tunctions
with values in F to the space of functions with valuesin }'= "

(2.9) Q) FM Y= F M T 1),
It is determined by the d operators of covariant differentiation
(2.10) O =L, a=1... . d

Thus (Joperates between g-modules, but it is not a module map.
The space # (M. V @ 7 ) of connections is turned intoan lg-module by the
homomorphism A — &, . where 6,\ acts in . % (M, V' » I'u) according to the

following rule. To first order in €.

(] +6$\I-Q(¢): Qb +ed, @)1 +e$\)

(200 UE )=, - Q@) — Q) &L,

DEFINITION (2.12). A covariant derivative is a space # (M. 17 ® I'u Y of connec-
tions. or the associated space of maps given by (2.9-10) with the structure
of lg-module givenn by (2.11).

The Lie algebra g actsin I by matrices:

Evidently. when the operator f\ is applied after Q(¢).asin (2.11). 51 +5,

replaces 54 in kq. ¢2.3). A short calculation gives

(2.13) 6 91t = (:{f\qs'),,“ e, A

in which ¢ is the vector field
o
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(2.14) e, =¢ "M, .
The action (2.11) induces

2.15) (8Ae)a = (,Z\e)a,

so that e transforms as a V-valued world vector field. while ¢ does not transform
asa Ve Vg -valued function, witness the last term in (2.13).

If we want to make contact with the concept introduced in Definition (2.6),
then we must assume that ¢ factorizes. Let X, be local coordinates on M and
define vielbein coefficients by

e, =e " a”, au = a/ax“.

For the present purpose only, suppose that ¢ has the representation
) A A
(2.16) ¢, =et r.=.

We stress that this need not be assumed in general. especially since the matrix
(ea“) may be rectangular, in which case the factorization may be impossible
or ambiguous. If (2.16) holds, then

217 Qa :ea“ Du.
with

_ A
(2.18) Du = a” + Fu Sy-

If the matrix (ea #3) is invertible, then the coefficients F“A define a connection
one form, I'(§) = ¢ F“A £, . with the usual transformation law

(2.19) ¢, =& —a A1

Our reasons for emphasizing the connection as defined in (2.8). instead of the
connection one-form defined in (2 6) is that this is the object that gauge theories
are made of To limit ones attention to D“ from the outset causes much trouble.
This is especially true if the vielbein matrix (ea“ ) is not invertible or if the facto-
rization (2 16)is not possible.

Note that iteration gives

(2.20) Q- Q) , =0, 0 +a, <
with
Ca gy —e G,

The practice of writing Qo Qa when (Q - Q)aﬁ is meant can be misleading.
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DEFINITION (2.22). Torsion and curvature are defined by
) — _ 5 5 A
Qi lafr=1,.°0 +R 7S,

where the upper (lower) sign applies wihen ¢ is a Bose (Fermi) tield.

The explicit expressions are

9]
‘w0

(2.

) Y — 0 PO S
' [ozﬁ Cap +¢aﬁ +¢ﬁa'

/ O _ A B C C - B C
+ Raﬁ V(ba (Z)ﬁ (AB + (eagbd +O(_6) W(ad ¢7 .

12

(2.
where the coefficients (caﬁ’ ) are defined only to the extent that
(2.25) le .e
The operators (2.18), when they cxist, give rise to the curvature two-form
_ A

[Dp’ [)L] - wuv SA )

with
s A B . A

w ﬁaulﬂ,, r—(u,v)+l““ PoC, 7

The formula

{2.26) R A =¢tovw A,
« 8 s

relates w to the curvature.

Invariant dynamics becomes possible if there is an invariant action. the first
requisite for which is a curvature scalar: that is, any scalar function constructed
from the curvature. The simplest case is the following. If the g-module I has
an invariant metric n. then a scalar field can be constructed by contraction of the

curvature;

) — AT ap
(2.27) R=R "5,
where

; ¢ @ _ ay (§ ) B
(2.28) S =0t S,k

Note that Raﬁ is antisymmetric if ¢ is a Bose field. For R to be non-zero
we need an antisymmetric S @ and consequently a symmetric n. If ¢ is a Fermi
field, then Raﬁ is symmetric and n must be antisymmetric. The metric

Y 109 [T - Mo, Voaf
(2.29) g e e

is non-zero under the same conditions. The square root of the determinant of
the metric, if it is defined. gives us the density needed to construct an invariant
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action integral.

Remark. It is an immediate consequence of the definitions that
‘ P }
(2.30) Raa M, =0

holds identically. In the case that the factorization (2.16) is possible (which
we do not assume in general), and if in addition the matrix of vielbein coeffi-
cients is invertible, then we have another identity,

A —
(2.31) Fu M, _a“.

This is nothing but Eq. (2.7). the condition for I" to be a section of the homo-
morphism 7 : lg = diff(M).

3. GAUGING GENERAL RELATIVITY

There has been a lot of discussion about the correct choice of gauge group.
and even about the appropriate tangent space to use in General Relativity. so
we consider several possibilities. The manifold is R*.

(i) Take V= R4, n the Lorentzian metric and g = so(n), the homogeneous
Lorentz algebra [15]. By the normal connection between spin and statistics
the field ¢ is a Bose field so that the contracted curvature (2.27) and the metric
(2.29) do not vanish identically It is therefore natural to take the action density
to be eR, where e is the determinant of (eu"‘). It is possible to express this action
density in terms of the metric. Since the local algebra acts on the metric by
the ordinary Lie derivative, 5Ag = 2L(¥) g, only the diffeomorphism algebra
acts effectively in pure gravity. This remains true when matter couplings are
introduced, provided that no spinor fields appear, for all tensor valued functions
can be converted to world tensor fields with the help of the vierbein coefficients,
and then &, always coincides with the Lie derivative, &, =£(¥) with § = A - M.

It will be useful to work out some of the details. A 4-by-<4 matrix A belongs
to so(n) iff )\aﬁ =2, Ny is antisymmetric We use the basis (Qaﬁ). a < B, in
which

Sy 6 & | 58y — 4 B
(3.1) (Sp),” =m,,0," —(@.B). ¢ =67
then the curvature tensor. Eq. (2.24)
5 _ 5 5 _ _ 5
(3.2) Ry =0, 5" +e, 87 —(a.f)—c, 9.

and the contracted curvature is Raﬁ‘m. In this case the matrix of vierbein coeffi-
cients is square, so the factorization hypothesis (2.16) can be made without
essential loss of generality. In terms of the connection one form I', defined
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in Eq. (2.16). and the quantity

2 B moa )
(3.3 T me e (o, ).
s
(3.4 R=7 {3 e aryp 4
o Mo M vy ’
[Notation: Late Greek letters u. v, . . . are used exclusively as world tensor

indices. Indices are moved and converted with the aid of the metrics g and 7,
and the vierbein coefficients. The operator D was defined in (2.17-18)

If the coefficients of " and of ¢ were independent of each other. then I" could
be varied with e fixed. Variation of the action with respect to I would then
aive the Fuler-Lagrange equations

A

(3.

) [)V(c’ Tuﬁ‘“'):O.

This would then be the first step in a straightforward derivation of the standard
Einstein field equations. If Eq. (3.5) could be justified. then it would yield
an explicit expression for I'. This expression could then be used to eliminate
I from the action. However, it is an immediate consequence of (2.14)and (2.16).
and a special case of the important identity (2.31), that, when the matrix of
vierbein coefficients is invertible, then

!
(3.6) —I M =3
~ H af

I

which constrains the freedom of variation of .

One way to deal with this is to abandon the geometrical interpretation (2.¢)
of the connection one-form as a section of the homomorphism from the local
algebra to diffiM). as well as the unification of vierbein and connection coef-
ficients in the single complex ¢. But the lack of internal coherence that results
is perhaps the main cause of the dissatisfaction that is often expressed by saying
that General Relativity is not a gauge theory. Indeed. the vierbein coefficients
no longer seem to have a natural place in the theory, and this is why some au-
thors favor a «purely geometrical» theory. by which is meant one in which no
vierbein is introduced. A much more natural remedy is to enlarge the gauge
algebra.

(ii) Take ¢ to be the Poincaré algebra [16. 13]. Keep the tangent space I
as above, with the same action (3.1) of the Lorentz subalgebra. and the transla-
tions acting trivially there. If (Qa oo = 1..... 4 is the usual basis for the transla-

tion subalgebra, then in the generic vector space T

(3.7) L T



WHAT IS A COVARIANT DERIVATIVE? 317

Since this representation is usually associated, in the field theoretical con-
text, with the spin, it may seem natural to argue that the matrices Sa may be
taken to vanish. This would be a mistake. however, since we are here concerned
with structure, not representations. The operators Qu. Eq. (2.10), take the form

[*4

I
— _ By (s
(3.8) Q =e, + 5 ¢>q Sge + Y, Sge

1
: Y 8y
(3.9) € == 0,5 My, + UM,

P

The effect of having included the translations is very evident here. The coeffi-
cients ¢ BY will play the same role as before. but the appearance of the new coef-
ficients d/a7 of the connection allows us to treat the coefficients of the Lorentz
connection as independent field variables. We emphasize that the inverse vierbein
coefficients are not identified with the coefficients of the connection one form
A;instead of Eq. (3.6) we have

1
(3.10) —T M +AcM =3 .
7 H aff H a M

with I and A defined, as in Eq. (2.16) by
o , _ B
¢a57 = CQM Fum‘ waﬁ A(QH A“ )

By (3.10). the translation connection A is determined by the Lorentz con-
nection I', but there are no longer any constraints on the latter. Attempts to
interpret the (inverse) vierbein directly as a connection oneform associated
with the translations fail because vierbein coefficients do not transform like
connection coefficients. The 10 coefficients qbaA = (q&aﬁ“". x{/aﬁ) are independent
of each other and form a Poincaré connection. The vierbein ¢, as well as the
Poincaré connection oneform. are all determined by the (paAs. Thus. without
adding any additional variables. we avoid the problems that arise from having
the vierbein double as a connection.

Torsion and curvature were introduced in Definition (2.22). The curvature
(2.24) now has two parts:

i
A _ _ 13
= R(Lor)w7 Své‘ + R (Tran)mg7 57.

RaB
The Lorentz curvature is still given by Eq. (3.2). and

(3.1 R (Tram) ;)" = ¢ 0% Yy +e v,y — (@B -c 0,7

s
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The full curvature is of course a tensor field. taking values in a finite dimensio-
nal g-module. The action of g (the Poincaré algebra) in this module is nonde-
composable. which finds expression in the fact that the Lorentz curvature is
a tensor while the R(7ran) is not. We can therefore (indeed we must) take the
sume action density as before. in terms of the contracted Lorentz curvature.
Recall now the identity (2.30).

(312 R "M, =0

which here says that R(Tran)is determined by R{(Lor). so the question of whether
the former plays any role in the theory is moot.

Having succeded in making I’ independent of ¢, we now return to the varia-
tional principle. (An easier way to study the content of the variational cquations
will be given later). Variation with respect to I' gives Eq. (3.5), and this cuan

be solved tor I to yield
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When TI' is eliminated from the action by means of this formula. then the
result is the contracted curvature of the Cristoffel connection . This was ele-
gantly demonstrated by Utivama [15]. Eq. (3.13) cun be re-arranged to read

b , U g ) ,
(3.14) D“(Q SR e, _v“(a = {.

The operator V is the «total covariant derivative». where au is replaced by
parallell transport with respect to the metric (Cristoffel) connection. It extends
to all tensor fields by means of Eq. (2.5) and the derivation rule.

The torsion tensor. Definition (2.22). vanishes when the Ebuler-Lagrange equa-
tions (3.5) hold. Notice a similarity between the expression (2.23) for the com-
ponents of this tensor with the formula (3.11) for the translation part of the
curvature: indeed, the latter reduces to the former when y is replaced by the
unit matrix. This reminds us of a famous constraint, R(Tran) = 0 [17]. Of coursce.
this restriction is not covariant. since as we have pointed out R(Trarn) is not a
tensor. A related mistake that is often made is to confuse the connection onc
form A with the inverse vierbein: this sometimes arises from ua desire to make
do without introducing the vierbein in the first place. but only the complete
Poincaré connection. This has always led to trouble, and the resolutions offered
have never been satisfactory [18]. Usually. one is asked to accept a change in
the interpretation. with attending change in transformation properties. in order

to justify the choice of Lagrangian.



WHAT IS A COVARIANT DERIVATIVE? 319

The vanishing of the torsion. together with the antisymmetry of ¢aﬁ 7 in the

upper indices, gives us

(3.15) 2¢a67 = Caya ~ Syap  Capy

This can be derived more directly from the expression

(3.16) Raﬁaﬂ - ¢aa7 ¢B76 _ ¢aﬁv %7& + zead)ﬁaﬁ _ caﬁv ¢A’aﬁ.

Variation of feR with respect to ¢a37 (with e fixed) gives immediately

€t g & -8 5 =829, " +e 1) - (B,

t_ -1 "
e, e E)“(e e, )
Summing over o =  shows that the right hand side is zero and thus

& o —_
(3.17) oy + d)ﬁv - ¢76a =0.

This derivation is independent of the factorization hypothesis (2.16).

Remark. For a fixed vierbein, the relation between torsion and Lorentz con-
nection is one:one, so we can take the vierbein and the torsion as the independent
variables. The curvature scalar is given by

R = A(t) — A(c),

= By _ Bra B v
A tamf“ 2t ! 4tw L

Now t is a tensor, so
— aBy Bya B o
Aab(t) taht +ata67t +btaﬁ t N

is a scalar for every @, b. An alternative action is therefore eRab, where
R, =4, —A).

So long as the parameters 4, b are such that 4 , is non-degenerate [4 is de-
generate if a = — 1 or + 2 orif b = (a — 2)/3.]. the variation of ¢ will lead to
t = 0 and the same reduced action. This remains true, for all practical purposes,
even when fermions are present.

(iii) Take g to be the Poincaré élgebra as before, but let ¥, «tangent» space,

be spinorial and endowed with a symplectic form n [19]. In V¥ the translations
act trivially, and so(3.1) acts by real. four-dimensional symplectic matrices,

a subalgebra of sp(n). Instead of (3.1),
(3.18) S0 =1, 8,7 (@ b 8,0 =8,

We use the letters @, » . . . for spinor indices and retain other conventions.
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he components ot torsion and curvature are
,ah(‘ = Sabe + ¢a}u‘ + d)luu"

> od . ¢ ed y cd 3 R 3 vd
/\ab - (pae th + ¢ d)/v + (ab) (u/) d)u :
The connection is fermionic and anticommuting, and so is the vierbein.

The invariant action is eR + possible torsion terms, and
(219 — b ea a eh RIS ab R abh
19) R (bae d)h ¢ae ¢17 + - (a (bh Cab d)z' ’

Further analysis, relegated to the Appendix. shows that one recovers, with the
inclusion of suitable torsion terms. conventional metric gravity .

4. DE SITTER GRAVITY

Perhaps one does not expect a great deal of difference between gauging the
De Sitter group or the Poincaré group. It is interesting, though. that here we
do not have the option of gauging only the Lorentz subgroup. The De Sitter
group is semisimple, and one corollary of that is that the curvature tensor is
now fully reducible. in contrast with the Poincaré case.

We present two versions of gauged De Sitter gravity. since both are instructive.
In both cases g = so(3. 2): tangent space is either 4- or S-dimensional. Since
g must act in M, the manifold is the De Sitter hyperboloid in R or a covering
of it. If (v )oa = 0. 1. 2. 3.5 (latin indices have this range) are coordinates

for R” . then the hyperboloid is the locus
(+.1) 80 v v, =p 18 = diag (+———+),

where p is the curvature constant, small but not zero. A basis for so(3. 21 is
given in terms of the action on M by (Qah )oa < b.

W0y V0,

(4.2) de_bMﬂh =1
We consider two possibilities for the tangent space.
(i) Take I = R® with metric & defined by (4.1), and g acting as so(é) [ 20].

The operators of covariant differentiation are

(4.3) 0 =

a

¢, L, =ec, +(1/2)9,75,, .

to | —

_ be |, — ¢ —p M
e, =¢""», acﬂ(pa 9, =¢ * 9, .

where E)L‘ = 9/9y° and E)“ = 9/dx*. (The embedding parameters v, must not be
confused with the coordinates x* . the choice of which will not be specificd).
The curvature coefficients take the form

(+.5) R, =0, e ¢, whbr ¢, ¢

ah o
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The action of the local algebra ¢ on ¢ and on R is reducible. This stems
from the existence of an invariant function from M to V. namely the function
given by the imbedding map, with value ya(x). As far as ¢ is concerned, we
restrict ourselves to the subspace defined by

y4 ¢abc =0.

A similar reduction using contractions against the upper indices is not 1g-
covariant, but nevertheless useful for computations. Define ¢ by

(4.6) ¢cab = écab +p(}’a¢cb ‘,"bd’ca)l

then d; is transverse to v on all three indices. The first term is associated with
the local Lorentz algebra; that is, with the stabilizer of the point on the mani-
fold indexed by y. It plays a role quite similar to the Lorentz connection in
Poincaré gauge theory. The coefficients ¢>ab in the second term can be said
to be associated with the local translations. The decomposition is not completely
un-natural and we shall see that the «Lorentz connection» can be determined
by the variational principle just as in the Poincaré case. Define an «inverse»
toe:

web _sou
ea fu —61/

" b _ b b
€ fu _Ba YV

and eliminate <£in favour of I', defined by

STab _ ou ab _ a o b vA
4.7 0.7 =e, I“l = ec“ fu fA l"M .
Let R be the contracted curvature and take the action density to be R/e,
__ . abede I v oA p 1/2
(4'8) e=¢€ E;w}\p c)a eb € ed ye p

and introduce the metric
4.9 9o = 590 e, e,

Then a straightforward calculation shows that this is precisely the same action
density as that of ordinary General Relativity.

This result is apparently not very well known, but in view of certain uniqueness
theorems based on internal consistency it is not surprising. In pure De Sitter
gravity as in pure Poincaré gravity, only diff(M) acts cffectively. In the presence
of spinor fields the two theories may be expected to differ. and they do. A
cosmological term may be added in both theories. in neither case it is fixed
automatically. What is eventually fixed by the inclusion of a cosmological term
in the action is the choice of the background that can be used in perturbation
theorv. Comparison with the work of Mansouri and MacDowell [21], which
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)

we leave for the interested reader. will show that our inclusion of a vierbein
avoids confusion, as well as the need to pass to the flat space limit at the end.

(i1) Let g = s0(3. 2) act in a four-dimensional tangent space I as sp(n), with
n a fixed nondegenerate antisymmetric matrix. In this section latin indices
tuks the valBes 1.2 3 4 We use a basis (€,,). ¢ < b, defined by the action
inl’, de =S

(S

el =1, 8,4 + @ b).

All the general formulas in Section 2, for the covariant derivatives ¢, curva-
ture and so on, apply (latin indices replacing early Greek). The plus sign must
be taken in (2.22) and in the equations that follow since. by the normal spin-
statistics association. the connection and the vierbein are fermionic. The com-
ponent Rab"d of the curvature are symmetric in both upper and lower com-
ponents.

One can proceed as earlier to construct the contracted curvature and the
action. The connection coefficients can be split into two sets, and those asso-
ciated with the local Lorentz subalgebra (the stabilizer of x} can be eliminated
by means of the variational equations, as before. The result appears to be es-
sentially the same as in the Poincaré case. The most interesting question is whether
the fermionic vierbein field is subject to a direct physical interpretation.

If the goal is a gauge theoretic framework from which to approach quantum
field theory on De Sitter space, then the cosmological term must be included.
Since the final theory is to be De Sitter covariant, it is natural to gauge this
algebra. One does not have the option of gauging only a subalgebra. since no
subalgebra distinguishes itself in a natural way. In the case of Minkowski space,
the Poincaré algebra does have a such a natural subalgebra. but to make use of
an option that is available in this singular limit only, seems to us highly unnatural.
In other words, when placed in a larger context, the question of whether Poincaré
gravity should be seen as a gauge theory of the Poincaré algebra or as a gauge
theory of the Lorentz algebra has only one reasonable answer. Thus. we should
not have been surprised to find. as we did, that the choice of the Poincaré al-
gebra is the only workable option. In any case, it is the only choice consistent
with stability of physical theory.

5. POINCARE SUPERGRAVITY

Here we hope to show that all this attention to structure has been usefui.
Instead of a manifold and a Lie algebra. we are now dealing with a super mani-
fold and a super Lie algebra. but this is not the main reason why supergravity
is a difficult theory to understand as a gauge theory. Instead, the trouble arises
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m the structure of the superalgebra g. The super manifold A/ is delined in
ms of R* and the Grassmann algebra with 4 generators {22]. For the Lie
er algebra ¢ we use a basis (Qaa)* o < B (with Qw = — Qﬁa ), for the Lorentz
valgebra, (£ ;) for the translations and (Qa) for the super translations, a, b, . ..
ng four-spinor indices and «, 3, . . . being four-vector indices. The Lorentz

ebra acts in spinor spaces by matrices Eaﬁ. and the structure is given by
_ S . a '
(8,2, 1=0"7"), ¥,

[%,.2,0=0, (¢, ,.%]=0.

! _ 1_ [ ] _ b
[Qaﬁ’gvl_aﬁvga aavgﬁ’ [Qaﬁ'ia]—(zaﬁ)a -

ere (v° ¥* Vb = (° ¥® )ac M. is symmetric, n the symplectic metric. We notice
it this action of g on itself is nondecomposable, with two uncomplemented
rariant subspaces; one spanned by all the translations and the other spanned
the ordinary translations in R*.

As in Section 2, g acts by vector fields MA in M, by matrices SA in the generic
nodule V, and by the operators L, =M, + SA in # (M, V). The local super-
;ebra g acts by operators A L, In the case when V is the trivial g-module
is action reduces to that of diff(M), but the local gauge algebra is much larger
an dif f(M).

The tangent space V has to be a g-module; we suppose that it is finite dimen-
mal. All nontrivial, finite dimensional representations are either nonfaithful
nondecomposable, or both. The simplest ones are the four-dimensional spinor
d vector representations of the Lorentz algebra, with all the translations acting
vially. However, the vielbein matrix is in this case rectangular and therefore
it invertible, which causes problems. Perhaps the simplest way to overcome
ch difficulties is to begin with a square vielbein matrix and look for a reduction
pearing subsequently. We therefore suppose that tangent space is 8-dimen-
»nal, more precisely a graded vector space of dimension 4 + 4 the action
" the Lorentz subalgebra being the sum of the two 4-dimensional representa-
s [23]. The superalgebra can act on this space in several different ways,
rrhaps the most natural is that obtained by analogy with the adjoint action
1 the invariant subalgebra that consists of all the translations. If (¢,. q&'a) are
e components of ¢ € IV, then this gives, in particular:

1) (S,9), =0. (S,8), =k(v57,),° ¢

A parameter k has been included; if it is taken to vanish then the module
s:comes completely reducible. Another possibility is the dual,

7 (S &), =kixS~*) . ¢ . (S o) =0.
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If (5.1) 1s adopted. then the condition ¢, =0 defines a submodule. while
q)/a = ( defines a submodule only if £ = 0. (Conversely if (5.2) holds).

With an 8-by-8 vielbein matrix one encounters no obstacles in copying the
procedure that was followed in the treatment of ordinary gravity. in Section 3.
up to the point of choosing an action functional. The curvature tensor takes
values in (" A 17 = l'g and breaks into nine parts. With respect to l'g we have
a Lorentz curvature and two kinds of translation curvature, but only the Lorentz
part is a sub-tensor (no constraint on other components is consistent with 1n-
variance), and only the Lorentz part can be contracted to form a scalar. With
respect to I~ A 1" the only sub tensor is the bi-spinor part if (5.1) holds and
the bi-vector part if (5.2) is adopted. The only (linear) scalar function is the
Lorentz curvature constracted as follows:

I
(5.3) R=—R,* (2 ¥ if (5.1)holds.

{3.4) R’ :R’Qaaﬁ_ if (5.2) holds.

The action density is assumed to be of the form eR. with the density factor
¢ constructed out of the vielbein. Let us postpone the question of the density
factor.

We want first to vary the action with respect to ¢, and (i),a. A formula for
R is obtained from Eq.s (3.19) and (5.3).

N
N

5

1
Y b ay 3 ) af .t gouf N Y
R = ("ab’ a |:¢a ¢b) + (ﬂ(pb - Cah (Z)U Coh ¢

or from Eq.s (3.2) and (5.4).

z oz Tt ay o B gt By g« Y, 4 a8
(357 R =¢ 9y, 9D, + 2 b,
PR A ¥ & a g
(aﬁ ¢ ¥ Caﬁ Cbc .

Let us now fix our attention on the first case.

The expression (5.5) is dominated by the spinorial part of the connection.
to the almost total exclusion of the vector part. The last term in (5.5) is never-
theless required for invariance. nor is it possible to eliminate ¢’ from the action
by adding torsion terms. Variation of the vectorial connection gives the covariant

constraint

3 < ab .y
(5.6) (-aﬁ) Con =0.

This is equivalent [since ¢, 7 =1 ,7 . see below] to

13.7) (> ﬁw”r

<3

Y = Y= (4 AP g
o =000r 0, =y, KT
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with arbitrary coefficients KB“. Eq. (5.6) reduces, in the simplest case when
KB‘" = 55“, to the famous torsion constraint introduced into superspace super-
gravity by Wess and Zumino [5]. It has not, until now and as far as we know,
beén telated to an interesting variational principle. To see that (5.6) is equiva-
lent to (5.7), we note that the components of torsion are, in the case considered;
that is, when (5.1) holds:

5.8 - c_ ., ¢ x c
(5.8) tyY =c,,”, =S+ 8, +ab)
Y = Y _ Y ¢ __ c A d s
taﬁ - caB ¢aﬁ ' taﬁ - Ca[i + kd)a (75 76 )d
fag? = Cag” F 80" — (@B 1, =+ Ik M), - (@ )]

These expressions have been so arranged that the action of the super transla-
tions leaks downwards and rightwards. (The dimension increases in the same
sense). The only sub-tensor among them (except for the supertrace, see below)
is the first one; this is also the only one that is completely determined by the
holonomy coefficients. The constraint (5.7) is thus covariant.

Variation of the spinoral part of the connection now leads to equations that
are covariant provided that the constraints that were obtained by variation of
the vectorial part are satisfied. This inter-relationship between constraints and
covariance is a direct consequence of the nondecomposable action of the super-
algebra in tangent space.

None of the Euler-Lagrange equations involve the vectorial connection, which
thus remains completely arbitrary. This would be unsatisfactory if we had a
theory in which these coefficients play a role, but actually they do not appear
anywhere except in the present context. All supersymmetric theories in super-
space have been formulated entirely in terms of spinorial covariant derivatives,
a curious fact that fits in very well with the present view of supergravity. Some
components of the spinorial connection also remain undetermined. just as hap-
pened in the case of the spinorial formulation of ordinary gravity. The part
of (5.5) that contains ¢ has exactly the same form as the curvature scalar (3.19),
as is seen when the components of the connection are transformed from the
spinorial basis (3.19) to the vectorial basis used here for the Lorentz algebra.
Further remarks are relegated to the Appendix.

Turning briefly to the other possibility, Eq. (5.5°), we at once recognize the
expression for the ordinary Poincaré contracted curvature. The Euler-Lagrange
equations obtained by variation of ¢ and ¢' are,

Y = c _
t s 0, and s 0.

<3

To verify that this is covariant we again write down the expression for the
torsion, assuming (5.2):
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¢ o . ¢ Y —p Y L
[uB -(aﬁ ' [aﬂ = Cap +(¢ad «. )

¢ o_ ¢ S Yo Y 5 o d 5y
lag =g~ Ppa - g’ = $ap’ KO Y Y g
Ly =0, (@ Fa by 1, =c Y ke (v ), Fla b)) .

The arrangement is according to the same principles as in (5.8). (The dimension
now decreases). This again confirms that the constraints obtained are covariant.
as of course they must be.

We have thus seen that there may be two quite different formulations of
super gravity. The first one is very likely to be closely related to the superspace
theory of Wess and Zumino {5]. and to contain the component form of supergra-
vity. Perhaps the simplest way to confirm this is to investigate the linear approxi-
mation: we shall do this in the next sections.

6. THE LINEAR APPROXIMATION

Supergravity was discovered quite some time ago. If we take interest in a
new derivation of it, it is for the purpose of testing the generality and the pro-
ductivity of a proceedure («philosophy») that claims to be rigid enough to be
used without ambiguity in the search for new theories. The formulation of
supergravity as a superspace gauge theory was accomplished already [5. 6. 7].
by a tour de force of improvisation and inventiveness. Here, no improvisation
has been required (so far), and therein lies the alleged advantage of our approach.
It is thus crucial to make sure that the «general structure» of Section 2 really
incompasses superspace supergravity, without compromise of integrity in the
application. The simplest way to do this is to examine the linear approximation,
in which the full kinematical structure must stand revealed.

We consider only the Wess-Zumino version. The first step is to find an exact
solution around which to expand. The simplest possibility is a solution for which
the Lorentz connection vanishes: then the field equations reduce to the torsion
constraints. We require a solution that is stable with respect to global supersym-
metry. Invariance under Lorentz transformations will be manifest, and the transla-
tions will act trivially, so it remains only to test the super translations. The
variations of the non-vanishing part of the connection are given by Eq. (2.13)
(the second, «affine» term is zero for global transformations), and by Eq. (5.1):
they must all vanish:

(Bﬂ(ﬁ)hc = ‘Mtz(pbc = 0. (5a¢)177 = /‘4tz¢b7 + ‘7577 )acthv -
(8,00 =M, 9, (8,07 =M 97 17"y ), '

+k(ysy), 9, =0. +k(y575),"8," = 0.
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Notice once again the leaking towards right and cown. We must solve in the
same order; the simplest solution is

(6.1) d)bC:&bC, ¢>b7:—6”’b,
re _ c ' _ .02 %
¢B = kOﬁ. d)ﬁ"—(l-}—k() )‘Sa'
Here we used the abbreviation

eab = (075 7(1 )b

and the conventional expressions for the vector fields that define the action

of g:
1
— — u L
(6.2) Ma—aa+20 aa“, Ma—aa.
Thus
T M ! u
(6.3) eszb—G bMy:ab—E() ba#,

' 2 '
ey =1+ kO )M’ — k8,5 M.

which includes the familiar flat space spinorial «covariant derivative»,
To invert these relations we have the identity

_ s B2 2 _
(6.4) 0,°0°, =81°0° 0°=0

.
The result is
(6.5) Mg =ely +k0,°e,,

— ’ c : c
Mb_eabea+(6b +k0“b0a Ye,-
To verify the torsion constraints we calculate

’

— (NS ro— ¥ c
[ea’ eb]— r )abMv =Cp e'y +Cab €

which in view of (6.5) means that
(6.6) e == (P )
5
cabc =—k(y 77 )ab 676’
The first formula is in accord with the constraint (5.7), and even with the
particular choice of Wess and Zumino [5]. The second expression satisfies the
constraint (3.24). Both torsion constraints are thus satisfied, and therewith

all the variational equations. Eq. (5.10) reduces to Bpe = 0, and the super deter-
minant of the achtbein matrix is equal to unity.
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The linear approximation is a perturbation of (6.3), we express it by
(6.7) ¢, =aqy +E 8 FET D
Here. and from now on. ¢, and q'ﬂ stand for the fixed point vector fields

(6.3) the former being the flat space sp'inon'al «covariunt derivative». This leads

in the linear approximation to

(0.8) [()u' ()h] - (75 77 )ab ﬂi")’ + I‘-ab(. az' + 14;117) (')’7
with
(6.9) 1';117 =q, ‘L‘Vh + (a. b).

The contribution of the first term satisfies the constraint (5.7). If we denote
by bold face the linear part of the coefficients, then

¢y . ¥ ¢
Cab _lah +kcah 07 :

s od gy S
P, 0, +1, 7

ah

~
~
i
u]—‘

The constraints (5.7) becomes

(6.10) e =YK

with KA arbitrary except for the requirement that Eq. (6.9) be integrable. The
other torsion constraint, Eq. (5.11), serves mainly to constrain the Lorentz
connection, except for the implication (3.24) on the holonomy coefficients.

In view of {(6.10). this becomes

e By b & cd - a _.
WyF) (576) FS=0

with ¥ satisfying y_¢® = 0 but otherwise arbitrary.

We should now substitute this back into the action. eliminating the connec-
tion in favour of the vielbein. and finally vary the action with respect to the
latter, remembering the constraints. We have not yet done this. Instead we have
made a preliminary investigation of the coupling to matter that we fecl gives
strong support to the conjecture that the local gauge theory constructed here

is in fact related to super gravity. This is reported in Section 7.

7. MATTER LAGRANGIAN
Let & be a scalar superfield,
=g +0Y+0°A+ (/0B , +0%0x+ 0"
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with B traceless. The invariant Lagrangian is
1
(7',1) | L =/[dx d()e(;— nb”(ead)) (e,®) + mdd)|.

In the zero’th approximation, when e = g, this reduces to

1 m

1 1
72 L ={dx|— — + - — , , = — [p—
(7.2) mo =7 x( . L e N A 0

] 1
+8AF + — ¢. A, + — tr(B§B)
4 THTE 16

1
+m |i2¢>F+A2 + — trBBJ).
16
The spinorial field equations

(7.3) w[ 1; Loy ]
. - —gx+ —%y - —x| =0
G XY X

. 5 ]i 1 m ]
7.4) Y —x— — y| =0,
( X 4W X 24/

can be rearranged to give
(7.5) 4 =—my, (F+my =0

Variation of the scalar fields,

1
(7.6) 5¢ [— T 824 + szJ =0,

1
8A [8Ff T 3¢+ 2mA] =0,

SF[84 + 2m¢] =0
reduces to
(7.7) 8F = —mA, 44 =—m¢. (0 +m*)p=0.

Finally,

1
(7.8) aB"b[g (d—m)B]ab =0



330 CHRISTIAN FRONSDAL

can be expressed in terms of a vector field and a pseudo-scalar field:
v v , P
B" = tr(y"B). 4B =—y B,.
where . exceptionally . v takes 5 values, with the result that
(7.9) mB =9 B.. mB,=—0a B .
[ oS 5 [TI

Thus one finds that the wave equations, though they at first appear to be of
the dipole type. actually describe nothing more than the irreducible. massive
super-multiplet. This is a minor miracle. for higher order wave equations have
a marked tendency to describe unwanted degrees of freedom.

This approach to the scalar superfield appears to be very simple and straight-
forward [24]. It is not the usual one, and for valid reasons. It is not at all evident
that interactions can be introduced without spoiling the miraculous absence
of ghosts, and it becomes necessary as well as interesting to understand what
mechanism might be at work to bring it about. In the case of the minimal in-
teraction with an external (super—) gravitational field, defined by the Lagrangian
(7.1). we suspect that the absence of ghosts may be guaranteed by the torsion
constraints. This is not absurd, since these constraints are actually field equa-
tions, derived by variation of the Lorentz connection. The Lorentz connection
does not appear in the matter lagrangian (7.1); remember that the connection
was varied with the vielbein fixed. so L, is not affected and the torsion cons-
traints are the same as in the absence of matter. The idea that torsion constraints
ensure self consistency in the matter sector is not new [25]. Recall also that
constraints on the background super-gravity field are connected to the absence
of ghosts in superstrings and super membranes [26].

To verify that the torsion constraints do in fact play this role would scem
to require very extensive calculations (or better insight). We prefer to merely
nibble at the problem at first, hoping that the indications will encourage a greater
effort. We shall limit the scope as follows. The supergravity background will
be treated in the linear approximation,

e, =q, +E,.

to first order in the perturbation £ . and this vector field will be taken to be of
a very special form.
We ignore all of L'a. except the term

SN, b
(7.10) E =¢,*0" 0,

n
with the coefficients € constant. This is in fact the term that couples to the
highest derivatives of the matter fields. and the first one that needs to be con-
trolled. The first order correction to L is then
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(711) L, , =fdxdb (¢"®) (E,®) + () £,,,)

where &6(e) is the first order correction to the density factor. We find after
integration over 6 that the first term contributes the following spinorial inte-
ractions:

1
(7.12) J dx —1?(757“)‘”’ =26, 0 ¥yt e, V0, W)

1
_—Zeab#[sz wa,“ _nab Xz wc‘u] ]

The field equations (7.3) and (7.4) are thereby modified to
(7.13) (—4fx + 32y — 8mx), =— (¥’ Y0 (26, vy, +
Ty €y B~ 260" Vo)
+ 8e, “x“, + 47t €5" X, "
(7.14) (— By —dx - 2my), =2e, ,* P, —ate, F oy,

The problem is to determine, under what conditions on €, these equations
describe the same number of degrees of freedom as they do when € = Q. This
is the case if they allow us to express, to first order in e, the field x in terms
of ¢ and its first derivatives.

When € = 0, the constraint is found by applying the operator — 9 + 2m to the
second equation and adding it to the first equation. To first order in e this gives

(715 —4m@@x + my), =—2¢ (Y)Y, —
- 2(757M )c"Z (Eadv + eday) lljd’uv + 2(757#)” eabv wc’uv +
+ nbe €50 (&Wx) w T 8€, “x”,” + 4n?? €5" Xeu
b
+2m[2¢,* ¥°, —n" e, " l]lc’u].

On theright hand side we can use the zero’th order field equations to simplify,
and especially to reduce the number of derivatives, obtaining

5 ' d 5 b
=—2 7#)0‘7 (eadv + edav) v uy + 2 7“)‘1 eabv lpc nv
v v a o a ab u
+8(e,.” +e, )X, Ham (2 M Yt Ve, )
Except in the mass term, only the symmetric part of e* appears. This is pre-

cisely the part that appears in the torsion constraint. According to Egs. (6.9-10),
the term without 8’s, we must have

v . vA
eab +eba =K (757)\ ab’
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Inserting this into (7.16) we get

. YEVA vody P b .
== 2K"(ys7, ). By + ax) ., +dmille * oy w e s N
_ N d : ,
=4m ["\L (75 7>\ )4' wd'u + 364(-‘1 \'Da‘u n”/ Ga/*u L'/<"H]
and thus, finally
(7.10) X, +my, + (€, " —€.,") u’/”m - b €,," V. L =0

The second order derivatives have cancelled. as a result of t.. torsion con-
straint. Eq. (7.16) reduces the number of degrees of freedom. just as effectively
as in the case when e = 0. The effectiveness of the torsion constraint (3.7} in
helping to avoid ghosts seems to be established.

Eliminating x between (7.14) and (7.16) one gets the first order correction
to the Dirac equation for ¢,

B4+ KMy vy 4o 1y, +my =0
¢ S EA 1 d (

Thus. the Dirac y-matrices have been modified,
ap

Yoy Ky =9

The anticommutator is

[¥/ y#], == 2&™ + K + K,

which tells us that the symmetric part of A is related to the gravitational metric.
A parallel analysis of the bosonic sector confirms these conclusions.

8. THE DIMENSION OF TANGENT SPACE

The choice of a tangent space of dimension 4 + 4 for super-gravity is not so
natural as it may appear at first sight. First of all, only spinorial covariant deriva-
tives seem to be important. In addition. this space does not have 4 natural exten-
sion to De Sitter super-gravity. By far. the most attractive possibility for that
theory is a 4 + | dimensional osp(1/4) module, in terms of which matter descri-
bed by scalar superfields, as well as super electrodynamics, find a very natural
setting [25]. This fact is something that cannot be ignored, for it would be extre-
mely unexpected to find a good theory in flat space, not deformable by the
introduction of a cosmological constant. (Some people do hope for just that
to happen!). It behooves us, therefore, to try to eliminate the vectorial vielbein.
the role of which in super-gravity is very marginal anyhow, and try to formulate
the theory entirely with just a 4-spinor tangent space. In fact, this is not difficult.

The problem that arises, whenever the dimension of I” is deficient relative
to the dimension of the manifold. is how to define torsion and curvature. In
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general,
[Q,. @ 1=lc, e, 1 +e, ¢, +
+e, ¢, + (6, 6,1+ (8,  +ac)Q,.
If the first term can be expressed as cabc e, then this can be rearranged to read
(€0¢ + 80" + 6y, ) Q + R, =1,° 0, + R,

If not, and that is the case of interest, then we parameterize the ambiguity
by «borrowingy» additional connections ¢>'a, from which we get additional vector
fields e’a = ¢aAMA. We assume that the full set (e, e'a) is a basis for TM
at each point x of M, which means that there is a unique expansion

¢

— . Y 5!
[ea’eb]_cab ec+cab e-y'

This allows us to define. for each choice of the ¢’s, a torsion, a curvature,
and an action. Of course, the action is not independent of these borrowed fields,
but the ambiguity is neatly avoided by declaring that the action must be stationa-
ry with respect ot variations of them. That is, in fact, exactly what we did. The
only thing that was not clear was that the nature of the ¢’as is totally irrelevant,
so long as there are enough of them. They play the role of Lagrange multipliers,
and the resulting constraints remove the ambiguity inherent in the definition
of the action.

Let us look at all this in terms of a different parameterization. We factorize:

Q,=¢t* (a“ + F”).

(Indices u, v, N, p refer to TM). When dim(a") is less than dim(M), as we sup-

pose, then this is ambiguous; the I''s are defined only modulo variations 8T

satisfying
(8.1) ea“ BF“ =0.
The action
v g b
(8.2) J dx do ea“ €, ([I’“. Fv] + (dl‘)w)"‘ (Eaﬁ)" ,

is required to be stationary with respect to all variations. In particular. if &I
is of the type that satisfies (8.1), then this gives the constraint

(8.3) Jdx df (8T ) e, e, 1" (2, ¥ =,

which is just the constraint (5.7). We conclude that dimensionally deficient
«tangent» spaces are not only possible but may actually be of special interest.
In particular, they may be a nice way to understand all the torsion type con-
straints on super gravities and super Yang-Mills gauge theories.
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APPENDIX

Here we first complete the analysis of ordinary gravity in the formulation
based on a spinorial tangent space. then investigate analogous problems in super-
gravity.

Since the Lorentz algebra is only a subalgebra of sp(n) it is convenient to
use the convention of dotted and undotted indices, as we shall do from now
on. The components of torsion are given by

[ab(' = Cabv + ¢ab(’ + Ppac
[c}b(’ = Cébc + (péb(' )

= Capee

[ab(-'
and three other formulas obtained from these by«conjugation» exchangingdotted
for undotted indices. Note that Bpe = 0. since the algebra is so (3, 1) and not
sp(n). and that the following components of torsion are determined by the
vierbein

(A D) ¢ C: c

abe ach = ’dhc ta'ch .
The non-zero components of the connection are
';d)ab(' =u C)ab(' at C)b('a + (t B C)

¢

cah’
goe = (7 e
and conjugates. In this notation‘ the expression for the curvature scalar becomes
(A.2) R=—¢,"¢," —0,° 0, +2¢, ¢+

cah" ¢C”b - cah‘: qSC-”b + conj. terms.

b b

+[ab

In terms of r and ¢, with ¢ ' =¢
[/} ab

] 1
_ — b ¢ _ . h ;78
R=——wu-0o," "t o+ : (1 —c) 0 of, +
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1
— (¢ Ac)a(t —c)"+2ea(t -~c)"+-:cab‘(1—lc)

“~

ab
¢

— ¢ (1~ C)cab - Cabé (r— c)é”b + conj. terms.

Most of the fc cross terms cancel. An integration by parts in the action density

’

allows us to replace the fourth term by — 2c’a (' - ¢')?; then the expression

for eR reduces to

1 1
(A.3) e 0 Cacb % — — cacb <, +
¢ . ab rota ¢ , ab - (
+ Cpp  Co T C 00—t b + conj.
1 b 1 5
— P ac — c
eztac t, —4zact”b+

’

+ 1, 1 + conj. terms ).

bc 4

Variation of ¢a is tantamount to variation of tab

Variation of ¢, amounts to variation of the symmetric part ot Lo and leads

and leads to téb" = 0.

to a constraint on the holonomy coefficients. This is because the bilinear part
of R is degenerate. Note that Cope = e SO that the constraint is covariant.

Constraints on the holonomy coefficients are familiar in superspace formula-
tions of supergravity, but this is the first time that they have turned up in ordi-
nary gravity, as far as we know. The action density (A.3) is unsatisfactory, not
because it leads to constraints but because it fails to fix the components Dbe
of the connection. The covariant way to fix these components is by making
the symmetric part of ! be vanish. but we reject the option of doing so by hand.

The natural remedy is to add torsion terms. Let us replace R by
"= ¢, ab ; be . b
(A4 R'=R+[pt,t:2" +qt, t.°+rt, 1
+s tabé 7+ conj. terms).

Variation of ¢, no longer leads to a constraint on the holonomy coefficients
but instead fixes these components,

1
(A.5) Gope = T (Cogp T i) H 1 —P)2g + 1),

a 5 cab
provided that g + r # 0. Another way to write this is

Lipe Tl =0 =D +r)c

abc bea’

Substitution of the variational equations back into R’ leads to



CHRISTIAN FRONSDAL

(%]
oo
o

R' = b ac . b oac e .oC o ah
+o, + ¢ (

Cae h 4 @ h ab ¢

1] —
-

i

|

~

~

1

13 Mg 0L, o+ g e e

<‘}"h )y + cony

) < &

Is this theory equivalent to General Relativity? To find out. we express the
holonomy coefficients in terms of the Cristoffel symbols. We find that the Einstein-
Hilbert action is recovered. provided that the parameters sutisty

(A.0) Fog=1. g+ ds+ 1)+ 301 - p)r =0,

The possibility of a generalization of the minimal coupling corresponds to
the generalizations that are possible in the more standard approach.

Turning to supergravity, we note that the expressions (3.19) und (5.5) are
formally equal once the constraints ¢ 7 = 0 are satisficd. The coefficients
(puh". ¢, are related by
¢ P = l_ (S e P9 =(ZF) @ he
A T8y a * Va “~ be Ta

We found that the action density eR is unsatisfactory in gravity because vi-
riation fails to fix the components ¢a.b(, ,and the same objection holds in super-
gravity. Here too we can add torsion terms, but now the requirements of in-

variance are more severe. The most general bilinear scalar is a combination of
r.tand t'.t’, where

_ ab D C
(A.7) tt=n"" 17t

Capital indices take 8 values:; . "is the supertrace g 8,

At this point we run into a problem that has not found a solution until now.
The expression (A.7). that must be included in the action density in order that
the variational principle fix all the components of the Lorentz connection. in-

¢

troduces the component los and through them the holonomy coefticients

Cuu". This means that the action density now involves the vectorial vierbein ¢,
absent from the curvature scalar and from the formulation of interactions with
matter. For this reason we are not enthusiastic about adding torsion terms to
the action,and we hope find a more satisfactory way to fix the connection coeffi-
cients.

We do not expect to find much application for this formulation of General
Relativity, since difficulties are encountered as soon us one attempts to use
it in connection with fermions. But the developments of this Section will be

useful later, when we turn to supergravity .
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Remark. We return to the constraint cabé = 0 that one obtains when the
action density is simply eR. There is one case in which this may be acceptable.
Suppose we have a theory in which only the @ , but not the Q. are used; then
there i§ no need to fix the components ¢ébc of the connection. The vanishing
of cabc means that the commutators of two Q s can be expressed without
bringing in the Q.’s. The covariant Klein-Gordon operator must be taken to be
defined as ¢ Q, (two terms) and the metric g*” = e+ e,, is, formally’ degene-
rate. This theory is a useful model for supergravity. It makes little sense as a
classical field theory, but the quantized metric field is not necessarily unreason-
able. It would be interesting to attempt a definition of the vierbein field as a
quantum field operator without vacuum expectation value, and recover the
vacuum expectation value of the metric as a quantum anomaly.
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