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What is a covariant derivative?
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Abstract. A slight changeof emphasis,from geometrytowards local symmetry,
provides a betterframeworkfor the formulation of gaugetheoriesof the gravi-
tational type. GeneralRelativity no longer requiresany improvisation, whether
the local algebra is basedon Poincaréor on Dc Sitter. Application to thegraded
superMinkowskimanifold, with local algebrabasedon thesuperPoincaréalgebra,
leadsto an actionprinciple. The torsion constraints are obtainedby straightforward
variation of the action. The comparisonwith componentsupergraviiyhasnot yet
beencompleted,but preliminary indications strongly indicate a close relationship.
Local symmetryof theactionprinciple is maintained,thestructureis field indepen-
dent, and the torsion constraintsalso preservethe local symmetryalgebra. The
coupling to matter showsthat these constraintsare necessaryfor the exclusion
of ghostsfrom themattersector.

1. INTRODUCTION

The conceptof ~gaugetheories>> has become dominantin physics,but is it
well defined? Before attempting to answer this question, let us think about

whether it is worth the trouble. Certainly, one may considerthe many brilliant

successesalready obtained in the field as proof positive that the foundations
are solid, that the path to discovery mattersbut little after the fact. With this
we do not wish to quarrel; instead,we want to emphasizethat,actually,success

has been anything but complete. The purpose to which we shall discussthe
structureof gaugetheoriesis constructive,and the aim is to attackrealproblems.
In order to attemptto engagethe interestof the readerit would be best to lay
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before him. Immediately, some concreteresults, to show that a review of the

methodology of gauge theories can bring tangible dividends. But it is necessary

first to define the problem.

The greatestsuccessstory of recenttimes is without any doubt theprediction

of the existenceand the massesof the electroweakmesons[I ~. One of themain

ideas behind this theory was the requirement of internal consistency. more

precisely. renormalizability [2]. It embodiesa principle that appearsto be of

great importance: renormalizability is much enhancedby symmetry, exact or

very carefully broken. This same principle animated, to a greatextent, early

interest in supersymmetry.There is no doubt that supersyninietric theories

are more finite [31.but what counts is renormalizability. not finiteness. Great

hope was attachedto the prospectthat super-gravitymight provide a consistent

quantum gravity, but here successhas been only partial [41:in other words.
as long as that situation remains,negligible. And yet, it seemsto us. it is too

early to write off supergravity.

Super~avitywas nevergiven a real chance to realize its potential. The high

hopeswere basedon the exploitation of s~>mn>etry,but thesymmetry of supergra-

vity must first be fully implemented.As was first predictedby Dirac. renorma-

lization of electrodynamicwas achievedonly within a formulation with ,nanifest

Poincarésymmetry. In quantummechanicsit is well known that aformal symme-

try of the hamiltonian doesnot imply degeneracyof the spectrum:one knows

well the relevanceof domainsand integrability for a symmetry to be of conse-

quence.In quantumfield theory such insight is lacking, hut one would surely

do well to be careful when trying to draw inference from the ~<symmetrv~ of

supergravity. First of all, integrability. so important in the quantummechanical

context, is certainly not provable: one has to be content with an invariance

algebra rather than an invariance group. But worse than that, the <<algebra>
is not defined, for it doesnot havea structure independentlyof its realizations.

(The <structure tensor>> dependson the dynamical fields). The search for a

superspaceformulation of super~’avitywas undertaken(or could at least he
justified this way) to improve the theory in this respect.It is fully recognized.

after all, that the vaunted properties of super Yang-Mills theories cannot he

establishedwithout a superspace.forrnulationthat is free of constraints.

The first superspaceformulation of supergravitywas achievedby Wess and

Zumino [51.it wasa real tour de force of hardwork andbrilliant improvisation.

But their theory doesnot satisfy the demandsthat one must put on it if one

would advance the hopes of a renormalizableversion of supergravity. There

is a stage,before the imposition of constraints,whereone can speakof a local

symmetry algebra(the good one?). But at this level one doesnot havean action

principle. The constraintsare no doubt important, but they are not derived
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from an action. They have to be introducedfrom outside, and they leave us
with a theory that sharesthe drawbacksof the original componentformulation.

Another monumentaleffort, by Arnowitt andNath [6], showeda lot of promise~

it was eventuallyabandonedwithout having beenfully developed,for reasons

that arenot too clear. Finally, Ogievetskyand Sokatchevhavedevelopeda very

original approach[7], perhapsthemostaestheticoneso far, marred,nevertheless,

by thesameimperfectionsas the theoryof WessandZumino [5].
In view of this state of affairs, the questionof renormalizabilitvof supergra-

vity must be regardedas being still open.It will probably remain open at least

until one shall havea formulation in which all the constraintsare derivedfrom

an action principle that is invariant under an appropriatelocal algebra.It appears
as if our investigation into the structureof gaugetheorieshas led us to such a

formulation, This paper presentsan action principle, invariant under a local

super Poincaré algebra (field independentstructure!), from which a weakened

form of the Wess-Zumino torsion constraintsfollows automatically. It admits

flat superspaceas an exact solution. A preliminary investigation of matter
couplings(in a formulation in which all constraintscome from the actionprin-
ciple)gives strongsupport for our belief that this theory is the requiredextension

of supergravity,but aproof is notyet at hand.
Gaugetheory is a framework for the constructionof dynamicalfield theories,

especially new theories. Many attempts have been made to use it effectively.

to further the understandingof gravity, to invent conformal gravity, to forriiu-

late supergravity, to limit ourselvesto the gravitational context. Still, it is by

no meansagreedby one andall thatGeneral Relativity is a gaugetheory in the

sense that Yang-Mills theories are gauge theories.Among the partisansof the

view that Einstein’s theory is agaugetheory there is no generalagreementabout

the correct choice of gaugegroup. This being the case,it is clear that General
Relativity cannot (yet) serveas a paradigmfor the invention of new theories.

Too much play is left for improvisation. Section 2 of this paperattemptsto

improve this situation. Here we shall review first, the applicationsthat shall

be carried out in the later sections. and subsequently,the general framework

that hasbeenformulated in Section 2.

Section 3 deals with ordinary gravity. The gauge algebra is local Poincaré;

attemptsto use only the Lorentz algebra do not succeed,for reasonsthat are

discussed.The framework of Section 2 is applied, here as in the other cases,

without the slightest improvisation. General Relativity is, in our opinion, the

gauge theory par excellence.The approach used here completely solves (avoids)

the perennial confusion betweenyierbein and connection coefficients. Section

4 is entitled De Sitter gravity, for the gauge algebrais local De Sitter. The algo-

rithm works just as well in this case,and the result is again GeneralRelativity.
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1)ifferencesbetween Poincarégravity and Dc Sitter gravity appearonl\ iii the

easeof couplineto spinors.

Section 5 applies exactly the same procedLire to the ease of’ the Poincarc

super algebra. Superspaceand <~tangent~. spaceare, as usual, of graded diincn-

ston 4 + 4. In line with the general ideas explainedin Section d. we allow the

super translations,and not just the Lorentz transformations.to act nontriviall\
on tangent space. I his is crucial becausethe special limiting easein which tlie~

do not act is characterizedby an ambiguity that obfuscatesthe correct choice

of the action. ftc invariantlv contractedcurvature tensor contains only one

half of’ the n4 achtbeincoefficients, and one half of the connection coefficients

enteronly algebraically.This explainswhy the torsion constraintsappearnattiral-

lv and autoniaticallv. as Euler-Lagrangeequations. I hese constraints do not

violate local sopersvillmetry. they are slightly weaker that> those of’ \~ess ,inii

Znnimno [51.In Section6 we establishtime fixed point of’ f’lat spacesupersvnlntetF\

e hasenot vet completed the reduction of the action to comnpomleni language

I )ur belief that the theory is an extensionof supergravit>c is based mmosti\ <<ii

ihe developmentsof the last sections.

Section deals with the niinimnal coupling of’ supergra~Iv to iliatte’!’

description of super—svmmetric matter differs f’rorii the traditional (inc amid

needsto be explained.The usualapproach,as developedby ‘.\ essand /n miii no xi

and by Salani and Strathdee] 0]. dealswith chiral supcrf’ields. I its method las

proved its mettle in mans’ successfulapplications. inelucfnmg snpcrgravmtv and
scipem’ ‘m ang-Mills I 0. 1 1 ]. ~evertlieless. we still harbor sum>’ m’csersatiomis ,i bout

it, First of all, the sLtperfield action of’ the Wess-LLtnminomnnitiplet is an aIecbrim<

C \pression. containing no derivatives of’ the superfield. I his is explained H

the fact that the e’]tiral superfield satisfies differential eonstrantts. tile since

time derivativesarc hidden in the expressionsfor the eonmt>nnents. seitieli Iie~nis

<it coumm’se. that the action is to he varied subject to these<.onstranlts Ii:
seords, tins approachto snperspacefield theot’y is vei’~ <lif’tereimt froni lv n

tional methods developed for ordinary field theories. In Let. dit’f’erenti.<l

straiilts are bannedthere. t’or very good reasons ( )ur pornI <<I men is eonsistemmi

with that advaiteed ibose. in conneetioti with supergravits It ni nst he aiimi ttc<l

however, that an aestheticprejudice constitutesmuchof our motivation Iv .1><<ii

the introduction of a priori constraints of ntis- tspe. and chmmralits eoitstr:nnt~

in partieLilar I I
I lie free field eqiiatiotn; for the unconstrained.sealarsnperf’ield can he demised

from an action that looks very ouch like that of an orchnars s~alarfield. I lie

l’ield eqnationsinelLi<te all the constraints.svhieh is satisfsi me diii ais_ dangerous

Interactions.especiahis those that involve denvatives. tend iv destros fh.. <vii

straints md thus increase time nnmnher ~f’ degrees of’ treeu>mn ‘Ins ttn’eat,’n-.
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he unitarity of the theory, which is why one may ,justificably refer to the new

tatesas ghosts. One is especiallyvulnerableto the appearanceof ghostsin the
:ase of interest, for the minimal supergravitationalinteraction containsjust as

nany derivatives as the free action. It is a remarkablefact that the torsion con-

traints derived from variation of the super-gravity connection,that remain

mnchangedby the coupling to the scalarmatter superfield, seemto be exactly
what is neededto avoid ghostsin the mattersector,thoughtheyare weakerthan

he constraintsof Wess and Zumino [5]. This circumstancemakesus feel rather
)ositive about prospectsfor developinga sensibletheory, and that is why we

jelieve that supergravityis includedcorrectly.
It remains to explain what is new in the general framework that hasbeen

;et up in Section 2, from which everythingfollows. At first sight, not much.
We choose a Lie algebra g. of finite dimension, a manifold M. and introduce

the local algebra 1g. as usual.We insist that g acts on M; if this action is trivial.

then one hasa gauge theory of the Yang-Mills type, a very specialcase.We are

mostly interestedin the opposite case. when the action of g is effective, by

which we mean that the vector fields of g span the tangentspaceof M at each

point In that case theactionof Ig on thespaceM (but not on the fields) reduces

to the infinitesimal diffeomorphisms.anddiff(M) thus appears through a natural

homomorphism. This unambiguousappearanceof diff(M) is not completely
new, but it is as important as it is unusual.Notice that diff(M) invariancecomes

about automatically, it is not a postulate:we are not partisansof a <<pure geo-

metrical>> point of view, This independenceof received geometrical notions

is particularly in evidencewhen it comesto thenext step,which is thedefinition

of the covariant derivative. We insist that all fields of interest be g-modules;

it follows that thecovariant derivativeoperatesbetweeng-modules.This principle

is sufficient to determinethe transformationpropertiesof connection.vielbein

coefficients, curvature and torsion under lg, which constitutes an important

departurefrom thoseapproachesin which the vielbein is introducedas an extra

ad hoc element.It also leads to the two identities (2.30) and(2.31).Theseiden-

tities are very important, as we try to make clear especially in the application

to Pomcarégravity. Other ambiguities remain: the choice of g. of M. and of

tangent space. The scalar curvature serves as invariant Lagrangianin some of

the most important cases,but not always. There is no general principle that

can tell us the correctchoiceof theaction.

The niatter of choosinga tangent spacedeservessome comment.The usual,

four-dimensional tangentspaceused for ordinary gravity is natural from every

point of view, so this exampleis not muchhelp in decidingwhatit is thatmatters

most. We do insist that tangentspacemust be a g-module,and such as to allow

for theexistenceof aninvariantcurvaturescalar(whichrulesout trivial g-rnodules).
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This may lead to difficulties with dimension,unlessone is willing to acceptthat

the matrix of vielbein coefficients may be rectangular(not square).Thus, in

conformal gravity, the dimensionof tangentspaceexceedsthat of themanifold,

since the lowest dimension of a real, non-trivial representationof the conformal

group is six. The reversecaseis evenmore interesting.In supergravityit hasbeen

customary to use an eight-dimensionalsupermanifold and an eight-dimensional

tangentspace. That is how we start out also, but the analysisends up with a

four-dimensionalspinorial tangentspace. It turns out that this deficiency in the

dimensionof tangentspaceis responsablefor the torsion constraints.Sometire-

liniinary reflectionson tIns ideaareoffered in Section8.

2. GENERAL STRUCTURE

Let 11 he a differentiable manifold andg a Lie algebra.Let (~ (. .~l= I mm

he a basis for q and supposethat q actsin ill by differentiablevector fields (<or-

bital>> action

Q
4 -~M4. .1 = 1 mm.

If 1’ is any vector space,let .~‘(M,V) denote the spaceof differentiable func-

tions from M to J7, If F is a g-module.in which g actsby matrices

~4 ~ .4 = I mm,

theng actsin .~(M,F) by the operators(rorbitals plus <<spin> action)

2~~+LA =M4 +SA:

hence.~(M,I’) is a g-module.

Let F be any g-module,and let F he g consideredonly as a vectorspace.
on which g acts by the adjoint representation.The space lg(V) of operators

in ~‘ (M, F) of the form

AL =A’
4L . AE.~(M I’

.4 , 9

is a Lie algebra.If F is a faithful g-module.then thestructurerelations

[A’.L, \.L]= A” .L

areindependentof 1’ and takethe form (C is thestructuretensorof q)

(2.1) A”C = A~AABcABC+ ~‘~“ —~A’~,

= \A~ ~‘ A’~M~.

DEFThtITION (2.2). The localalgebra Ig is time space.~(M,I’ ) with thestructure
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of Lie algebradefinedby Eq. (2.1) [13].

If V is a g-module, faithfull or not, then .~‘(M, F) is an Lg-module. and the

action of g in this spacedefinesa homomorphismfrom g to somesub-quotient

[g(V’). If V is a trivial g-module, then tg(V) is a subalgebraof the Lie algebra

diff(M) of differentiable vector fields on M. We shall here supposethat g acts

effectively in M; that is, that (MA), A = 1. . . . , ii, evaluatedat x EM spans

the tangentspaceat x. Then lg(V) = diff(M) wheneverg acts trivially on V.

To be precise,onehasthehomomorphism

(2.3) ir:Ig’-~’diff(M), A~*~=A.M.

There is a good reason for insisting on this intimate connectionbetweenthe

local algebra and the diffeomorphism algebra, for it makes the interpretation

of General Relativity as a gaugetheory completely natural. Here we arein empha-
tic disagreementwith much of the literature,and especially with proposalsto

look at Ig anddiff(M) as independentingredientsof the theory.

Later we shall haveoccasionto introducethesubalgebra5lg definedby

(2.4) MA A’~=0.

Oneeasily verifies that this doesin fact definea subalgebraof Ig

The local algebraalso actson world tensor fields overM. Let M, V be as above,

and let.9’(M, F) be thespaceof differentiable tensorfields over M, valuedin V.

This is an Ig-modulewith thenaturalaction

(2.5) ~ =~‘(~)+A.S.

Here ~is the vectorfield definedin (2.1). and~ft,~)is theordinary Lie derivative

associatedwith ~. The operator..~ in .~(M,V) will be called the Lie derivative

associatedwith A. If V is a trivial g-module. then.9’~M,F) reducesto theusual

tensorialdiff(M) module.

For fixed g andM we now turn to the problemof defining acovariantderiva-

tive. It seemsnatural to interpret the local algebra Ig as a bundle over diff(M),

with bundle projection ir defined by Eq. (2.3). Avoiding the difficult problem

of introducing topologieson thesespaces,we propose

DEFINITION (2.6). A “connection one-form” is a sectionof thehomomorphism
(2.3) that is, a map F: diff4M) —~ Ig such that ‘ii o F is the identity map:

diff(M) ~ ~-*F(~)E 1g.

(F)(~)=~

This notion will be relevant and useful, but we shall neverthelessreservethe
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name <connectionsfor a slightly different object. Note that (2.7) is a nontrivial

constrainton thecoefficients:seeEq. (2.31) below.

To define a covariant derivative we must fix, besidesp and M, a > tangent

space>>.so called for quaint historical reasons[14]. From nosy on I’ will denote

a fixed, finite-dimensional q—niodule. We insist that this <tangent space must

he a p-module.

DEFINITION (2.~)..4 <<connections i.s a differentiable function 41 I’ 5:

4 = ). = 1 = I
mu/mered is time dimensionof I

A connectiondefines, for eachq-module 11 a map from tIme spaceof functions

with valuesin 1’ to thespaceof functions svith valuesin I - :.: I’.

2,0) Q(4) :.~(M, i’)~.~(M V-s: I’),

It is determinedby the d operatorsof covariantdifferentiation

2.1W Q =4’
4L ,n=l

i c< .4

l’hus Q operatesbetween g-modules.but it is not a module map.

The space.~‘(M, V ® V I of connectionsis turnedinto an Ig-module by the

homomorphism A ‘-~ , where acts in .~‘ (M, F a> 1’ 1 according to the

following rule. To first order in e,

If + e ~( ‘Q(4) = ~)(4 + eö
5Ø( (1 +

l’hus

2.ll Q(ö\0) = ‘ (2(0) (2(0)’ ~.

DEFINITION ~2.12). ‘1 covariant derim’ath’e is a space.~‘ (Al. I’ at I’ I o,t c’onnee-
[ions, or the associatedspace of maps gii’en be (2.9-10), wit/i the structure

of’ lg-m-mmodu/egii’en hi’ (2.11),

‘I’he Lie algebrap actsin I’ by- matrices:

~..1

Evidently, when fhe operator ~ is applied after (2(0). asin (2.11). .S1 ~ ,~

replacesS~in ELI. (2.5), A short calculationgives

2.13 (ôO)’m = )~)0)t

in whiche is thevector field
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(2.14) e

The action (2.11) induces

(2.15) (~Ae)a= (~~<~e),

so that e transformsas a V-valued world vector field. while 0 doesnot transform

asa V® V-valued function, witnessthe last term in (2.13),

If we want to make contactwith the conceptintroducedin Definition (2.6),

then we must assumethat 0 factorizes. Let .v be local coordinateson M and

define vielbein coefficientsby

e =e9a , a =a/ax
a a M M

For thepresentpurposeonly, supposethat 0 has the representation
(2,16) 0 A = e “ F A

a a

We stressthat this neednot be assumedin general,especiallysincethematrix

(e’~)may be rectangular,in which case the factorization may be impossible

or ambiguous.If (2.16) holds, then

(2.17) Q =e~D.

with

(2.18) D =a +r~AS
p 12 u A

If the matrix (e L) is invertible, then thecoefficientsF A define a connection

oneform, F(fl = ~ F~ ~A . with theusualtransformationlaw

(2.19) (~AF)pA = (~F)A —

Our reasonsfor emphasizingthe connectionas defined in (2.8). insteadof the

connectionone-form definedin (2 6) is that this is theobjectthat gaugetheories

are madeof To limit onesattention to D from theoutsetcausesmuch trouble.
p

This is especially true if the vielbein matrix (c ~ (is not invertible or if the facto-

rization (2 16) is not possible.

Note that iterationgives

(2.20) ~ ~ = ~a + ~

with

(2.21) ~

The practice of writing (2 when ((2 is meant can he misleading.
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DEFINITION 1 2.22). lorsion amid curvatureare definedhe

~ (~,~) = t~>3
5(2 ±R~’454 -

il/mere theupper(lower) sign applies when0 i.s a Bose(fermi) field.

The explicit expressions are

(2.23) t 5=c ~ ~a>3 amt a>3 ia

(2.241 = O4OBC( +~e4~~ ---

where the coefficients(c>3’~) are definedonly to theextentthat

12.231 [e , e ] =c >ca >3 all -m

The operators (2.1 8). when they exist, give rise to the curvature two-forum

ce:

[D.DI=w AS -

P ~‘ 12<’ .4

s~’itli

= ar’tm -~- (p. u) + ~ ~BC

The formula

(2.2 6) R ~ = e e r wa t3 pr

relatesce to the curvature,

Invariant dynamics becomes possible if there is an invariant action. the t’irst

requisite for which is a curvaturescalar:that is, any scalarf’unction constructed

front the curvature.The simplest case is the following. If the g-module I’ has

an invariant metric 77, then a scalar field can be constructed by contraction of the

curvature:

(2.27) R =RA SA.

where

(2.28) 5A ~ ~5A ~-m>3~

Note that Rall is antisymmetric if 0 is a Bose field. For I? to be non-zero

we need an antisymmetric 5A a>3 and consequentlya symmetricr~.If 0 is a Fermi

field, then is symmetric and i~must be antisymmetric.The metric

(2.29) qPV = c ea >3

is non-zero under the same conditions. The square root ol time determinant of

time metric, if it is defined. gives us the density needed to construct an invariant
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action integral.

Remark.It is an immediate consequenceof thedefinitions that

(2.30) R~ MA = 0.

holds identically. In the case that the factorization (2.16) is possible (which

we do not assumein general), and if in addition the matrix of vielbein coeffi-

cientsis invertible, then we haveanotheridentity,
(2.31) FAM =a -

p A p

This is nothing but Eq. (2.7). the condition for F to be a sectionof thehomo-

morphism it : Lg -~diff(M).

3. GAUGING GENERAL RELATIVITY

There hasbeena lot of discussionabout the correct choice of gaugegroup,

and evenabout the appropriatetangent spaceto use in General Relativity, so

we considerseveralpossibilities.The manifold is R
4.

(i) Take V = R4, m~the Lorentzianmetric and g = so(77). thehomogeneous

Lorentz algebra [15]. By the normal connection between spin and statistics

the field 0 is a Bose field so that ti-me contractedcurvature(2.27) andthemetric

(2.29) do not vanish identically It is thereforenaturalto taketheactiondensity

to be eR, wheree is the determinantof (e
12a), It is possibleto expressthis action

density in terms of the metric, Since the local algebraacts on the metric by

the ordinary Lie derivative, ö~g = .ft(~) g, only the diffeomorphismalgebra

acts effectively in pure gravity. This remains true when matter couplings are

introduced,providedthat no spinor fields appear,for all tensorvaluedfunctions

can be convertedto world tensorfieldswith thehelpof thevierbein coefficients,

and then bA always coincideswith theLie derivative, 2~=~(~)with ~ = A ‘M.

It will be useful to work out someof the details, A 4-by4 matrix A belongs

to so(77) iff = is antisymmetric We use ti-me basis (~>3).~ < ~3,in

which

(31) (S)~=77ö
9—’(R~)~>37=0>3~aul’y ay>3 ‘ ‘ a a

thenthecurvaturetensor.Eq (2.24)

(3.2) R>3~= ~a7~ + e — (a, j3) — call 0~

and the contractedcurvatureis R~a>3.In this casethe matrix of vierbein coeffi-

cients is square,so the factorization hypothesis (2.16) can be made without

essential loss of generality. In terms of the connection one form F, defined
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in Eq. (2.16). and time quantity

(3.3) T~
12< = e ~ c

3< ‘-- a, ~3

it is

(3.41 R=T ,
12’

1a Fa>3+r~r <3),
12 ~‘ i~ 1

[Notation: Late Greek letters p. t ,...a re used exclusively as world tensor

indices. Indices are moved and converted with the aid of the metrics p and ~

and thevierbein coefficients.‘Tue operatorI) wasdefinedin (2.1 7-1 8)]

If time coefficientsof F and of e svereindependentof each other, then F could

he varied with e fixed. Variation of the action with respect to F would then

give tIme Euler-Lagrange equations

(3.5) D (c’r P<’)Q

I’ a33

This would ti-men be the first step in a straightforward derivation of the standard

Einstein field equations. If Eq. (3.5) could be justified. ti-men it would yield

an explicit expression for F. This expressioncould then he used to elinminate

F from time action. Uowever, it is an immediate consequence of (2.14) and (2.161.

and a special case of time important identity (2.31 ), that, svhen the matrix of

vierbein coefficients is invertible, timen

(3.6) — F a<3 Al , = a
-~ p a<3 p

which constrains the freedom of variation of F,

One way to deal with this is to abandon the geometrical interpretation I 2 .t)

of ti-me connection one-forum as a section of time homomorphism from the local

algebra to d(tf(M). as well as the unification of vierbein and connectioncoef-

ficients in time single complex 0. But the lack of internal coherenceti-mat results

is perhapsti-me main causeof the dissatisfactionti-mat is often expressedby saying

that General Relativity is not a gaugetheory. Indeed, the vierbein coefficients
no longer seemto have a naturalplace in ti-me theory, and this is why someau-

thors favor a <purely geometrical>> theory, by which is meantone in which no

vierbein is introduced. A nmucim more natural remedy is to enlarge the gauge

algebra.

(ii) ‘lake p to be the Poincaréalgebra [16, 13]. Keep the tangent space

as above. witlm the same action (3.1) of the Lorentz subalgebra.and the transla-

tions acting trivially timere. If (Q ). a = I .,... 4 is time usual basis for tIme transla-

tion subalgebra. then in the genericvector spaceI’.

(3,7) .f - —~S - t~ ~
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Since this representationis usually associated,ii> the field theoreticalcon-

text, with the spin, it may seenm natural to argue that the matricesS may be

takento vanish.Ti-mis would be a mistake, however,sincewe are here concerned

with structure,not representations.The operatorsQ . Eq. (2.1 0). take the form

(3.8) = ea + ~ 5>37 + Oa>3 S>3~

(3,9) e = ‘~“ 0~~>~ + Oa>3 ~Tl>3

The effect of havingincludedthetranslationsis very evident here,The coeffi-

cients O>3~will play the samerole as before.but the appearance of tIme new coef-

ficients m4<~>of the connectionallows us to treat the coefficientsof theLorentz

connectionas independentfield variables.We emphasizethat time inversevierbein

coefficients are not identified with the coefficientsof ti-me connectionone form

A: insteadof Eq. (3.6) we have

(3.10) — ~ all>~j +A a~j =a -
2 ~ a>3 p a p

svith F and A defined,as in Eq. (2.16) by

0~=c~F~’. 0>3=e~A>3.a ~ p a a p

By (3.10). the translation connectionA is determinedby the Lorentz con-
nection F, but there are no longer any constraintson the latter. Attempts to

interpret ti-me (inverse) vierbein directly as a connection oneform associated

with ti-me translations fail becausevierbein coefficients do not transform like

connectioncoefficients, The 10 coefficientsOaA = (0a>3~i1I~>3) areindependent

of each other and form a Poincaréconnection.Time vierbein e, as well as time

Poincaré connection oneform, are all determinedby ti-me Oa’<3 s. Thus, svithout

adding any additional variables,we avoid the problems that arise from having

tIme vierbein double as a connection.

Torsion and curvature were introduced in Definition (2.22). The curvature

(2,24)now hastwo parts:

R A = — R(Lor) ~ S + R (Traim) ~ Sa>3 2 7> all

The Lorentzcurvatureis still given by Eq. (3.2). and

(3.11) R (Tran)~’ =Ø> ~>3> +L’~ — ~ c>~,.
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The t’ull curvatureis of coursea tensorfield. taking valuesin a finite dinmensio-

nal g-imiodule. The action of g (time Poincaréalgebra) in timis module is nonde-

composable.wimich finds expression in the fact tlmat the Lorentz curvature is

a tensor while the R(Tran) is not. We can timerefore (indeedwe must) take the

same action density as before. iim terms of the contracted Lorentz curvature.

Recall now ti-me identity (2.30).

m3.I2 R ~ 41 = 0
~p A

which Imere says timat R( Tramm) is detemnminedby RU_oh,so time questionof sshetlier

the fornmerplaysany role in ti-me theory is nmoot.

Having succededin making F independentof e, we iioss return to the varia-

tional principle, (Aim easierway to study the contentof’ thevariationalequations

will be given later). Variation svith respect to F gives Eq. (3.5). and this can

he solvedfor F to yield

(3.13) F ‘< = ‘y ~ e “, ( c
IA>’ pZ’ ‘ <‘ p

— Id> q a

When F is eliminated from time action by meansof this formula. thieim the

result is ti-me contracted curvature of the (‘ristoffel connection “y. Timis was ele-
gantly demonstratedby Utiyama [1 5]. Eq. 13.13) can be re-arrangedto read

(3.14) 1) e -- -y ‘c ~ e ‘=0,
pa pk a p a

Time operator V is the stotal covariant derivative>~,where d is replaced by

paraliell transport with respect to the metric (Cristoffel) coimnection.it extends

to all tensorfields by meansof Eq. (2.5) andthederivation rule,

The torsion tensor. Definition (2.22). vanisheswhen the Euler-Lagrangeequa-

tions (3.5) hold. Notice a similarity betweenthe expression(2.23) for ti-me coin-

ponentsof ti-mis tensor with the formula (3.11) for the translation part of the

curvature: indeed, the latter reducesto the former wimen ~i is replaced by time

unit matrix. This remindsus of a famousconstraint,R(Tran) = 0 [I 7]. Of course.

this restriction is not covariant, since as we have pointed out R(Tran) is not a

tensor. A related mistake timat is ofteim nmade is to confuse theconnectionone

form A with the inverse vierbein: ti-mis sometimesarises from a desire to make

do without introducing the vierbein in the first place. but only time complete

Poincaré connection.This hasalways led to trouble, and the resolutionsoffered

Imave neverbeen satisfactory [1 8]. Usually, one is asked to accept a change in

the interpretation. svitlm attending change in transformationproperties. in order

to justify ti-me choiceof Lagrangian.
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The vanishing of the torsion, togetherwith the antisymmetryof 0a>3~in the

upperindices,givesus

(3.15.) ~ai3’y = C>3.ya — C~ya)l—

This can be derived more directly from theexpression

(3.16) R/i’~>3= — ~a>3~~ + 2e~/ia>3— C/i
7

Variation of feRwith respectto ~ (with e fixed) givesimmediately

c~a+0>37 ~ ~a(~i +et)—((3,’y),

t=ela (cc 12)
7 12 7

Summingovera= j3 showsthat the right handside is zeroandthus

(3.17) c/ia +0>37a q~ =0.

This derivationis independentof the factorizationhypothesis(2.16).

Remark. For a fixed vierbein. the relation betweentorsion and Lorentzcon-

nection is one:one,so we can takethevierbein andthe torsion asthe independent

variables.The curvaturescalaris givenby

R = A(t) —

A(t) = t tally — 2 t ~>37a ~4 ~ >3 t~ -a/i’> a/Iy a/i y

Now t is a tensor,so

A (t) = t ta/i’> + a t t>3’~+ b t >3ab a/i’> a/i’> a/i y

is a scalarfor everya, b. An alternativeaction is thereforeeRb, where

Rab =Aab(t)_A(c).

So long as the parametersa, b are such thatAab is non-degenerate[A is de-

generateif a = — I or + 2 or if b = (a — 2)/3.}. the variation of t will lead to

t = 0 and the samereducedaction. This remainstrue, for all practicalpurposes.

evenwhen fermionsarepresent.

(iii) Take g to be the Poincaréalgebraas before, but let I”, etangent>>space,

be spinoriai and endowedwith a symplectic form 77 [19]. In V the translations

act trivially, and so(3.l) acts by real, four-dimensionalsymplectic matrices,

asubalgebraof sp(~).Insteadof (3.1),

(3.18) (~b)cd ~ac ~b +(a, b). ~ab z0abC

We use the letters a, b . . . for spinor indices and retain other conventions.
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Ehecomponentsof torsion andcurvatureare

‘all> -— a/<<’ +
0a/’<’ +

Rai< < = 0aaC ad + e ~ >~ + (ab) <~~< ~ -

‘TIme connectionis fernmionic am-md anticommuting, and so is time vierhein.

lime invariant action is eR + possibletorsion terms, and

3.1 9 R = — 0ae h 0h ea 0ae 0, ~ + 2 >‘a o>a/, <a/ < 0, a!>

Furtimer analysis,relegatedto the Appendix. simows ti-mat onerecovers,with time

iimclusion of suitable torsion terms, conventional metric gravity.

4, DE SITTER GRAVITY

Perhaps one does not expect a great deal of differeimce betweeim gauging time

Dc Sitter group or the Poincaré group. It is interesting, though, that here we

do not have the option of gaugingonly ti-me Lorentz subgroup.Time Dc Sitter

group is semisimple, and one corollary of timat is that time curvaturetensor is

now fully reducible,in contrastwith time Poincarécase.

We present two versionsof gaugedDc Sitter gravity.since both areinstructive-

ln both casesp = so(3. 2): tangent spaceis eitimer 4- or 5-dimensional.Simice

p must act in ‘li, time nmamfold is the Dc Sitter hyperboloid in R>3 , or a covernig

of it. If (Ta ). a = 0. 1 - 2, 3, 5 (latin indices have ti-mis range) are coordinates

for R> , then thehyperboloid is the locus

4.1 ) ~ah ,l’a i’> = p , = diag 1+ — — — +1,

where p is time curvature constant,small but not zero. A basis for so) .3, 2 is

givenin termsof theaction on Al by ~ah~’ a < h.
(4.2) (~ —<~M = 1’

all all ‘all ‘ha

We considertwo possibilities for the tangentspace.

(i) Take F = R5 , with metric ö defined by (4.1), and p acting as so(s) 1201.

The operatorsof covariantdifferentiation are

= ~ Oahc L hc = ca + (1/2) Oahe

Ca = Oab< j< a = Oa>’ ~, = e12 ~m,

where a = d/dve and ~ = 3/dy12. (The embedding parameters v must not he

confused with the coordinatesx12, the choice of which will not he specified).

Time curvature coefficients take the forimm

= Oa<e 0he~+ ‘a
0/>’~ (a, h) >~ 0cd
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The action of the local algebra g on 0 and on R is reducible, This stems
from the existenceof an invariant function from M to I’. namely the function

given by the imbedding map, with value Ya(X)~As far as 0 is concerned,we

restrictourselvesto thesubspacedefinedby

ya ~bc =

A similar reduction using contractions against the upper indices is not 1 g-

covariant,but neverthelessuseful for computations.Define ~ by

(4.6) ~ab ,~ab +p(ya
4~b _ybcba):

then ~ is transverseto y on all three indices. The first term is associatedwith

the local Lorentz algebra;that is, with the stabilizerof the point on themani-

fold indexed by y. It plays a role quite similar to the Lorentz connectionin

Poincaré gauge theory. The coefficients Oab in the second term can be said

to be associatedwith the local translations.The decompositionis not completely

un-natural and we shall see that the <<Lorentz connection>>can be determined

by the variational principle just as in the Poincaré case. Define an <<inverse>>

to e:

e~f~’_ö
12

ea12 fb = ~b — ~ ~

andeliminate~ in favourof F, defined by

(4,7) .....~p r~b...C12fafb ~

Let R be the contractedcurvature and take the action density to be R/e.

(4.8) e = �abcde CMI<XP ~12 eb ~ e~ -“e ~

andintroducethemetric

(49) g =

5ab ea

12 Cb”.

Then a straightforwardcalculation shows that this is preciselythesameaction

density as thatof ordinary GeneralRelativity.

This resultis apparentlynot very well known, but in view of certainuniqueness

theoremsbasedon internal consistency it is not surprising, In pure Dc Sitter

gravity as in pure Poincarégravity, only diff(M) acts effectively. In the presence

of spinor fields time two theories may be expectedto differ. and they do. A

cosmological term may be added in both theories, in neither caseit is fixed

automatically.What is eventually fixed by the inclusion of a cosmologicalterm

in the action is the choice of time backgroundthat can be used in perturbation
theory. Comparison with the work of Mansouri and MacDowell [21], which
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‘ye leave for the interested reader, will show that our inclusion of a vierbein

avoids confusion, as well as the need to passto the flat spacelimit at the end.

(ii) Let p = so(3. 2) act in a four-dimensionaltangentspace I’ as sp(ifl. with

77 a fixed nondegenerate antisymmetm-ic matrix. In ti-mis section latin indices

take time values 1, 2 3 4 We use a basis ~ah ), a ~ b, defined by the action

inV~ ‘-~5 -

all all

~b
1c~=

77ac ~h + (a, b).

All the general formulas in Section 2. for the covariant derivatives~a’ curva-

ture and so on, apply (latin indices replacing early Greek). The plus sign must

he taken in (2.22) and in the equations ti-mat follow since. by the normal spin-

statistics association,the connection and the vierbein are fermionic. The com-

ponent RahC><3 of ti-me curvature are symmetric in both tipper and lower coin-

ponents.
One can proceed as earlier to construct the contracted curvature and ti-me

action. The connection coefficientscan be split into two sets, and tlmose asso-

ciated with the local Lorentz subaigebra(the stabilizerof .v can be eliminated

by nmeans of tIme variational equations,as before. The result appearsto he es-

sentially thesameasin thePoincarécase.The most interestingquestionis whether

tIme fermionic vierbein field is subjectto a direct physicalinterpretation.

If the goal is a gauge theoretic fraimiework from which to approachquantuni

field theory on Dc Sitter space. then the cosmological term must be included.

Since the final theory is to be Dc Sitter covariant. it is natural to ga~mgeti-mis

algebra. One does not have the option of gauging only a subalgebra.since no

subalgebradistinguishesitself in a natural way. In the caseof Minkowski space,

ti-me Poincaréalgebra doeshave a sucha natural subaigebra,but to make useof

an option that is availablein this singular limit only, seems to us highly unnatural.

In other words,whenplacedin a largercontext,thequestionof whetherPoincare

gravity should be seen as a gauge theory of the Poincaréalgebraor as a gauge

theory of the Lorentz algebrahasonly one reasonableanswer.Thus, we should

not have been surprisedto find, as we did, that the choice of the Poincaréal-
gebrais the only workable option. In any case,it is the only choiceconsistent

with stability of physicaltheory.

5. POINCARE SUPERGRAVITY

Here we hope to show that all this attention to structure hasbeen useful.

Insteadof a manifold and a Lie algebra,we are now dealing with a supermani-

fold and a super Lie algebra,but this is not the main reasonwhy supergravity

is a difficult theory to understandas a gaugetheory. Instead, the trouble arises
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m the structureof the superalgebrap. The super manifold 11 is defned in

rims of R
4 and the Grassmannalgebra with 4 generators122]. For the Lie

er algebra g we use a basis (2/i). a < ~3(with 2~= ‘ 2iia~’ for the Lorentz

algebra,(2’) for the translationsand ~2a’~for the supertranslations,a, b, -

ng four-spinor indices and a, ~, - . . being four-vector indices. The Lorentz

ebraactsin spinorspacesby matrices andthestructure is given by

~2a’2b~ = (5a) 2’a~

[2~2/i] 0, [2’,2’~} =0.
[2 Q’]=~ 2’—ö 2’ [2 2]=(~ )b

2

a/i ‘> /3’> a a’> /3 a/i a a/i a b

,ere (.ySya)~= (5~.~,a)c
77cb is symmetric. 77 thesymplecticmetric. We notice

it this action of g on itself is nondecomposable,with two uncomplemented

‘ariant subspaces;one spannedby all the translationsand the other spanned

the ordinarytranslationsin R4.

As in Section 2, g acts by vectorfields MA in M, by matricesSA in thegeneric

nodule F, and by the operatorsLA = MA + SA in ~(M, V). The local super-

;ebra ig actsby operatorsAA LA . In the casewhen V is the trivial p-module

5 action reducesto that of diff(M), but the local gaugealgebrais much larger

~n diff(M).

The tangentspaceV has to be a p-module;we supposethat it is finite dimen-

mal, All nontrivial, finite dimensional representationsare either nonfaithful

nondecomposable,or both. The simplest onesare the four-dimensionalspinor

d vector representationsof the Lorentz algebra,with all the translationsacting

vially. However. the vielbein matrix is in this caserectangularand therefore

t invertible, which causesproblems. Perhapsthe simplest way to overcome

ch difficulties is to beginwith a squarevielbeinmatrix andlook for a reduction

pearing subsequently. We therefore supposethat tangent spaceis 8-dimen-

)nal, more precisely a graded vector space of dimension 4 + 4, the action

- the Lorentz subalgebrabeing the sum of the two 4-dimensionalrepresenta-

)flS [23]. The superalgebracan act on this spacein several different ways.

rhaps the most natural is that obtained by analogy with the adjoint action

1 the invariant subalgebrathat consistsof all the translations.If (~, O’a) are

e componentsof 0 E F, then this gives, in particular:

.1) (SaO)b 0. (S~)’a =k(y

5~ya)ab ~b’

A parameterk has been included; if it is taken to vanish then the module
~comescompletelyreducible,Anotherpossibility is thedual,

(Sth). =k(~v
5’v~<), d’ (SO)’ 0.
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If (5.1 ) is adopted,then the condition ~ = 0 definesa submodule,while

= 0 definesa submoduleonly if k = 0. (Converselyif (5.2) holds).
With an 8-by-8 vielbein matrix one encountersno obstaclesin copying time

procedure ti-mat was followed in the treatmentof ordinary gravity, in Section 3.
up to the point of choosingan action functional, Time curvaturetensor takes

values in (I’ A F ‘) 1: ‘~ and breaksinto nine parts. Witim respect to I >~e have

a Lorentz curvatureand two kinds of translationcurvature,hut only the Lorentz

part is a sub-tensor(no constraint on other componentsis consistent with in-
variance), and only the Lorentz part can be contracted to forni a scalar. Witim

respect to F’ I ‘ time only sub tensor is the bi-spinor part if I 5. I I hmoids amid

time hi-vector part if (5.2) is adopted.TI-me only (linear) scalar function is time

Lorentzcurvatureconstractedas follows:

(5.3) R = — R
1a/i ~a/i’ if(5.l)lmolds.

(5.4) R’ = ~ if (5.2) holds.

‘[he action density is assumedto be of the form-mi cR, ~vitii ti-me density factor

e constructedout of ti-me vielbein. Let us postponeti-me qrmestion of time density

factor.
We want first to vary the action with respectto ~<< and ~‘ A formula (or

R is obtained from-mi Eq.s (3.19) and(5.3).

(5 5) R = ~ [~aa’> Oh~ + <‘~~h>3 “ ~ <all ~e ~ <all ~-,

or from-mm Eq.s (3.2) and (5.4).

IS 5’) R’ =~‘ ~ ç~’ >3 ---~‘ >3-m << + 2<7’ ~‘ a/i
a <3’> a <3-> a 3

-- ‘> <A’ a/i c e a/i
a/i ‘<‘ a/i ‘<‘V

Let us now fix our attention on the first case.

The expressiom-m (5.5) is dominatedby the spinoriai I-mart of’ ti-me connection.

to the ahi’nost total exclusion of the vector part. The last term-mi in (5.5) is never-

timeless requiredfor invariance,nor is it possibleto eliminate ~‘ from the action

b adding torsion terms. Variation of thevectorial connectiongives tIme covariant

constraint

a/i~ <all = 0.

This is equivalent Isince cal, ‘< = tall’> . see belowIto

5.7) (~ I” t = 0, or t = (yll y<3~ A’a/i all a! a!’ p
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with arbitrary coefficients K/ia. Eq. (5.6) reduces,in the simplest casewhen

K/ia = ~a to the famous torsion constraint introducedinto superspacesuper-

gravity by Wess and Zumino [5]. It has not, until now and as far as we know,

been related to an interestingvariational principle. To see that (5.6) is equiva-

lent to (5.7), we note that the componentsof torsionare, in time caseconsidered:

that is, when (5.1) holds:

(5.8) tab = Cah~ tb = Cab + 0a/’ + (a, b)

t ‘>=c ‘>_<A ‘> t C_c C+k<Ad( )C
a/i a/i “a/i ‘ a/i — a/i ‘<“a ~.Y

5’Y/i~

t/i = C/i’> + Oa/i — (a, ~3), ta/i=c/i+[kO~(y5~/i)J — (a, ~3)]

These expressionshave beenso arrangedthat the action of thesuper transla-

tions leaks downwards and rightwards. (The dimension increasesin the same

sense).The only sub-tensoramong them (except for thesupertrace,see below)

is the first one; this is also the only one that is completelydeterminedby the

holonomy coefficients.The constraint(5.7) is thuscovariant.

Variation of the spinoral part of the connectionnow leadsto equationsthat

are covariant provided that the constraintsthat were obtainedby variation of

the vectorial part are satisfied, This inter-relationshipbetweenconstraintsand
covarianceis a direct consequenceof the nondecomposableaction of thesuper-

algebrain tangentspace.

None of the Euler-Lagrangeequationsinvolve the vectorial connection,which

thus remains completely arbitrary. This would be unsatisfactory if we had a

theory in which these coefficientsplay a role, but actually they do not appear

anywhereexcept in the present context. All supersymmetrictheories in super-

spacehave beenformulated entirely in termsof spinorial covariant derivatives,

a curious fact that fits in very well with the presentview of supergravity.Some

componentsof the spinorial connection also remain undetermined,just as hap-

pened in the case of the spinorial formulation of ordinary gravity, The part

of (5.5) that contains~ hasexactly the sameform as thecurvaturescalar(3.19).

as is seen when the componentsof the connection are transformedfrom the

spinorial basis (3.19) to the vectorial basis usedhere for the Lorentz algebra.

Further remarksarerelegatedto the,Appendix.

Turning briefly to the other possibility, Eq. (5.5’), we at once recognizethe

expressionfor the ordinary Poincarécontractedcurvature.The Euler-Lagrange

equationsobtainedby variationof ~ and ~‘ are,

t ‘>=O.andc C0
a/i a/i

To verify that this is covariant we again write down the expressionfor the

torsion, assuming(5.2):
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1/i = <a/i t/i = <a/i + 10/i) —-a, ~)

ta/i = <a/i - 0/ia ‘ ta/i = <a/i - 0a/i k~</id(ySy)~da’

‘all =cah” +(0h~+u, b), th = cab +[k~~d(ylly’>)~~+(a, b)I

Ti-me arrangementis accordingto thesameprinciplesas in (5.8). (The dimension

i-mow decreases).This again confirms ti-mat ti-me constraintsobtainedare covariant,

as of coursethey must be.

We have thus seen that there may be two quite different formtmlations of

supergravity. TI-me first one is very likely to be closely related to thesuperspace

theory of Wess and Zumino [5], andto contain thecomponentforum of supergra-

vity. Perhapsthe simplest way to confirm this is to investigatethe linearapproxi-

mmiation: we shall do ti-mis in thenext sections.

6. THE LINEAR APPROXD4ATION

Supergravity was discoveredquite some time ago. If we take interest in a

new derivation of it, it is for the purposeof testing ti-me generalityand ti-me pro-

ductivity of a proceedure(<<philosophy>>) that claim-mis to be rigid enough to be

used without ambiguity in the search for new theories. The formulation of

supergravity as a superspacegauge theory was accomplishedalready 15. h. 7].

by a tour de force of improvisation and inventiveness.Here, no improvisation

hasbeenrequired(so far). andthereinlies the allegedadvantageof ourapproach.

It is thus crucial to make sure that the <<general structure>>of Section 2 really

incompassessuperspacesupergravity, without compromise of integrity in the

application. Ti-me simplest way to do this is to examineti-me linearapproximmmation.

in which the full kinematicalstructuremuststandrevealed,

We consideronly the Wess-Zuminoversion, The first step is to find an exact

solution aroundwhich to expand.The simplestpossibility is asolution for which

time Lorentz connectionvanishes:then the field equationsreduce to ti-me torsion

constraints.We require a solution that is stablewith respectto global supersym-
metry. InvarianceunderLorentz transformationswill be manifest, andthe transla-

tions will act trivially, so it remains only to test the super translations. Ti-me
variations of the non-vanishingpart of the connectionare given by Eq. (2.13)

(the second,<<affine>> term is zero for global transformations),and by Eq. (5.1):

they n-mustall vanish

a0)ll~ = ‘~1a0b = 0, ~a0~h = MaOb-m + )y5y’> >ac0f’~= 0,

~a
0)/iC = Ma0/i>’ (öa 0)/i’> = lIla 0/i (y<3 Y

1ac 0<3<

+k(ySy/i)ah 0h =0, +k(ySy/i)abOb’> =0.
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Notice once again the leaking towards right and <own. We must solvein the

sameorder;thesimplestsolution is

(6.1). Ob~’“sb’ ~b’> “°b’

OP/ic =_kO/iC. O’/i’> =(1 +k0
2)~/i’>.

Here we usedtheabbreviation

0ab =

and the conventional expressionsfor the vector fields that define the action

of g:

(6.2) M = 0 + — 0~0 , M’ = 0

a a 2 a ~ a a

Thus

(6.3) eb =Mb — O’>bM’ = 0b — 2 0bO(~.

e’~= (1 + k02)M’/i — k0/i~’M~.

which includesthe familiar flat spacespinorial <<covariantderivative>>,

To invert theserelationswe havethe identity

(6.4) OC’ ~ ~ 02, ~2 ~

The resultis

(6.5) M~= e’~+ kG/ic e~,

Mb = 0’<b e’ + (oh> + kOc<bOac)ec.

To verify the torsion constraintswe calculate

[ea,eb]=_(~ys7’>)abMP’> =c~e +cbe,

which in view of (6.5) meansthat

(6.6) Cb’> “5”~’>~ab’ -

Cab =_k(~yS~y’>)~~QC,

The first formula is in accordwith the constraint (5.7), and evenwith the

particular choice of Wess and Zumino [5]. The secondexpressionsatisfies the

constraint (3.24). Both torsion constraints are thus satisfied, and therewith

all the variationalequations.Eq. (5.10) reducesto de = 0, and the superdeter-

minant of the achtbeinmatrix is equalto unity.
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The linearapproximationis a perturbationof (6.3). we expressit by

(6.7) <h = ~‘h + Eh~0~+ Eb’> ~

Here, and from now on. and ~‘<~ standfor the fixed point vector fields

(6.3) time former being the flat spacespinorial <<covariunt denivative,. This leads

in ti-me linearapproximationto

(6.8)
1<a’ ‘h’ = — (y5y’> 7ah M + ‘ab a,, + ‘all ~‘

witim

(6.9) ‘all = Pa E
1 + (a, 1’>).

Ti-me contribution of the first term satisfiesthe constraint (5.7). If we denote

by bold face the linear partof the coefficients, then

= ‘all + kdll’> 0’>.

~ ‘>=~r co’> +1,’
all -, all C all

Ti-me constraints(5.7) becomes

)6.l0) c =(‘y
5y~<)K -m,

all a

~~itlmA’ arbitrary except for the requirement that Eq. (6.9) be integrable. The
other torsion constraint. Eq. (5.1 1), serves mainly to constrain ti-me Lorentz

connection, except for the implication (3.24) on ti-me Imolonomy coefficients.

In view of (6.10). ti-mis becomes

(Oay/i) h ~ )Cd j- a =0.a ‘<‘6 <‘C

with ~ satisfying‘y ~ = 0 but otherwisearbitrary.

We should now substitute this back into ti-me action, eliminating the connec-

tion in favour of time vielbein. and finally vary the action with respect to ti-me

latter. rememberingthe constraints.We havenot yet donethis. Instead we lmave

made a prehim-m-minary investigation of the coupling to matter that we feel gives

strom-mg support to tIme conjecture ti-mat the local gauge theory constructed here

is in fact related to supergravity. This is reportedin Section 7.

7. MATTER LAGRANGIAN

Let 1 be a scaiarsuperfield,

~)=O+O0+O?,d+(II2)OallBai,+O?0X+O41.
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with B traceless.The invariant Lagrangianis

(7.1) L =fdxdGe(_77ba(ea~)(eb~)+ln~).

In thezero’th approximation,when e = q, this reducesto

(7.2) L~
0=f dx(_ 81 ~ — ~xx—~Ox

1 1
+8AF+ —0, A, + —tr(B$B)

4 <‘> ~ 16

+m [20F+A2 + — trBBj).

Thespinorial field equations

(7.3) ~ [—~~÷ ~020_~~X] 0,

11 ml

(7.4) Ox [—-~~Vl_x—-~’0] =0,

can be rearrangedto give

(7.5)
4x=—mv5, (~+m)0=0.

Variation of thescalarfields,

(7.6) 00 [—41 02A + 2mF] = 0,

- OA[8F__020+2mA]=0,

OF[8A + 2m01 = 0

reducesto

(77) 8F=—mA, 4A =—mO, (02 +rn2)0=0.

Finally,

(7.8) o~b[ ($_<fl)B]ab 0
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can he expressedin termsof a vector field am-md a pseudo-scalarfield:

B>’ = tr(-y<’B). 4B = — .yVB

wimere. exceptiommally, ~ takes S values. wi,th ti-me result ti-mat

(7,9) nuB =0 B . rnB =—a B
p p5 5 p p

Thus one finds that the wave equations,though they at first appearto be of

the dipole type, actually describenothing more than the irreducible, massive

super-mmmultiplet.Tlmis is a n-minor miracle, for higher order wave equationshave

a markedtendencyto describeunwanteddegreesof freedom.

This approaclm to the scalar superfieldappearsto be very simple and straight-

forward [24]. It is not the usualone,and for valid reasons.It is not at all evident

ti-mat interactions can be introduced without spoiling the miraculous absence

of ghosts, and it becomesnecessaryas well as interesting to understandwhat

mechanismmight be at work to bring it about. In ti-me caseof the minimal in-

teractionwith an external (super—)gravitational field, defined by ti-me Lagrangian

7.1). we suspectthat the absenceof ghosts may be guaranteedby the torsion

constraints.This is not absurd,since these constraintsare actually field equa-

tions, derived by variation of the Lorentz connection.The Lorentz connection

doesnot appearin the n-matter lagrangian (7,1): rememberthat the connection

was varied with the vielbein fixed, so L,~ is not affected am-md the torsion cons-

traints are the sameas in the absenceof matter. The ideati-mat torsion constraints

ensure self consistencyin the matter sector is not new [25]. Recall also that

constraintson ti-me backgroundsuper-gravity field are connectedto ti-me absence

of ghostsin superstringsandsupermembranes[26].

To verify ti-mat ti-me torsion constraintsdo in fact play this role would seem

to require very extensive calculations (or better insight). We prefer to merely

nibble at the problem-mi at first, hoping that the indicationswill encouragea greater

effort. We shall limit the scope as follows, The supergravitybackground will

be treatedin the linear approximation.

c =q +E.
a a a

to first order in the perturbationEa~and timis vector field will be taken to be of

a very specialform.

Weignore all of Ea~except the term

(7.10) E = � p
0b aa all p

with ti-me coefficients e constant. TI-mis is in fact the termim ti-mat couplesto the

highest derivativesof the matter fields, and the first one that needs to be con-

trolled. The first ordercorrection to L,,,0 is then
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(711) Lm I = f dx dO ((qa4.~)(E1) + O(e),~°),

where 0(e) is the first order correction to the density factor. We find after

integration over 0 that the first term contributesthe following spinorial inte-

ractions:

(7.12) fdx(_(ySyPfb[_2eaCvOC,p0b<’+�abPOC,p 0c,><]

__Cab~[2Xb 0a,~ ~ab xC

The field equations(7.3) and(7.4) aretherebymodified to

(7.13) (—4~x+020_8mX)~=_(y5ya~2ev0b,+

+2i~ ~ <‘
0d —2� ~<Jj )bc ad ‘p,’ ab CJ,LV

+ 8e<’~X>
2 ,~ +

4~ab �b X> ‘p’

(7.14) (— ~0 —

4x — 2rn~ii) = 2~ba
0b — ~bc ~bc

0a’p’
The problem is to determine, under what conditions on �, these equations

describethe samenumber of degreesof freedomas they do when e = 0. This

is the caseif they allow us to express,to first order in c, the field x in terms

of 0 andits first derivatives.
When � = 0, the constraintis found by applying theoperator— 0 + 2m to the

secondequationandaddingit to the first equation.To first order in e this gives

(7 15) —4m(4~+m0)~ _2�ac~<(~i,L1)a,,<—

— 2(ySyM)~a(�adV + �da) O~ +
2(ySyM)ab Cab 0~,<’>~+

+ ~bc

6bc ~ + S�caPXa,p +

4~abCab X>’p

+
2m[2eacM

0a — ~ab
6ab ~

Ontheright hand side we can use the zero’th orderfield equationsto simplify,

andespeciallyto reducethenumberof derivatives,obtaining

=_2(ySyM)~a(�adV+Cda<’)
0d + 2(~57M)ab �b ~

+ 8(Eu + e<’) Xa, + 4m [2�” 0a — ~ab Cab
0c ~

Except in the massterm, only the symmetricpart of e~appears.Ti-mis is pre-

cisely the part that appearsin the torsion constraint.Accordingto Eqs.(6.9-10),

the term without 0’s, we must have

6ab + Cba = K~(75YX)ab~
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Insertingthis into (7,16) we get

= — 2A’~(y5~ )d($0 +
4X)~,,+ 4m [2�” ~ pal’ ~a/’~ ~< p1

= 4nm [A’~ (y
5 ~ll ~ ~

0J’,’ + 2�a, ~ a ~a/ ~ P

and thus,finally

(7.16 I 4x<.. + ~ + (�“ “ <7<’a P) a ~ah Call y,~ —

Ti-me secondorder derivativeshave cancelled,as a result of ti,. torsion con-

straint. Eq. (7.16) reducesthe nummiberof degreesof freedom,just as eff’ectivciv

as in tIme case whemi � = 0. TI-me effectivenessof tIme torsiom’m constraint 1 ~,7 in

helping to avoidghostsseemsto be established,

Ehiumminating x between(7.14) and (7.16) one gets time l’irst order correction

to ti-me Diraceq<mationfor ~i,

C + A”~(y
5 y\ )~C ~,, 0, + in 0. = 0.

Thus, theDirac y-mnatniceshavebeenmm-modified.

y<’~y<’ + A~ ~>, = y”.

TI-me anticomm’mmutatoris

= — 2(~” + A’”’~ + KCp,

which tells us ti-mat the symmetricpart of A is relatedto ti-me gravitational metric,

A parallelanalysisof ti-me bosonicsectorconfirm-mis theseconclusions.

8. THE DIMENSION OF TANGENT SPACE

Time choice of a tangentspaceof dimension4 + 4 for sLmper-gravitvis riot so

natural as it mi-may appearat first sight. First of all, only spinorial covariant deriva-

tives seem-mi to be important. In addition. ti-mis spacedoesnot havea naturalexten-

siOn to Dc Sitter super-gravity. By far. the most attractive possibility for ti-mat

theory is a 4 + 1 dimensionalosp(1/4) mmmodule, in tern’ms of which mi-matter descri-

bed by scalarsuperfields,as well as superelectrodynaniics.find a very natural

setting [25]. TIns fact is somethingthat cannotbe ignored,l’or it would be extre-

mely unexpectedto find a good theory in flat space.not det’ormnahle by ti-me

introduction of a cosniological constant. (Some people do hope for just that
to happen!). It behoovesus, therefore,to try to ehinunateti-me vectorial vmeibeim’i.

the role of which in super-gravity is very marginal anylmow, am-md try to formulate

the theory entirely with just a 4-spinortangentspace.In fact, this is riot difficult.

Ti-me problem ti-mat arises. wheneverti-me dimension of F’ is deficient relative

to the dimension of ti-me manifold, is how to define torsion and curvature. In



WHAT IS A COVARIANT DERIVATiVE? 333

general,

~a’ ~b I = [c, eb] + ea
0h +

- - + ebOa + [1ba~~b1 + (0abC + a, c) Q.

If the first term can be expressedasCabC ec~thien ti-mis can be rearrangedto read

(cb> + ~abC + ~ba~ ~c + Rab = tabC Qc + Rb.

If not, and that is the case of interest, then we parameterizethe ambiguity

by <<borrowing>>additional connectionsO’aP from which we get additional vector

fields e’ = 0 AM . We assumethat the full set (e , e’ ) is a basis for TMa a A a a X
at eachpoint x of M, which nieansthat thereis a unique expansion

[e, e~]= Cab e~+ Cb’> e’.

This allows us to define, for each choice of the 0’~a torsion, a curvature,

and an action. Of course,the action is not independentof theseborrowedfields,

but theambiguity is neatlyavoidedby declaringthat theactionmustbe stationa-

ry with respectot variations of them. That is. in fact. exactly what we did. The

only thing that wasnot clear was that the nature of theO’aS is totally irrelevant,

so long as thereare enoughof them. They play the role of Lagrangemi-multipliers,

and the resulting constraintsremove the ambiguity inherent in the definition

of ti-me action,

Let us look at all this in termsof a different parameterization.We factorize:

~a >Z<(~aP (a~+[‘~).

(Indicesp, ~, 2<, p refer to TM). When dim( V) is lessthan dim(M), as we sup-

pose, then this is ambiguous;the F’s are defined only modulo variations OF

satisfying

(8.1) e~0F~= 0.

The action

(8.2) f dx dOe” e~([F. I”~I+ (dF))a<3 ~a/i’

is required to be stationary with respectto all variations. In particular, if OF

is of the type that satisfies(8.1), then this givestheconstraint

(8.3) fdx dO (0F)~ lea. eb] (~a/i~~=

which is just the constraint (5.7). We conclude ti-mat dimensionally deficient

<<tangent>>spacesare not only possible but may actually be of specialinterest,

In particular, they may be a i-mice way to understandall the torsion type con-

straintson supergravitiesandsuperYang-Mills gaugetimeories.
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APPENDIX

Here we first complete the analysisof ordinary gravity in the formulation

basedon a spinorial tangentspace,then investigateanalogousproblem-misin super-

gravity.

Since the Lorentz algebra is only a subalgebraof sp(Tfl it is convenientto

use time convention of dotted and undotted indices, as we shall do from now

on. Ti-me componentsof torsion are givenby

I =c +~ +0
abc all>’ abc bac

t =c +0-
abc abc abc

I ‘ = c
abc abc

am-md three other formulasobtainedfrom theseby~<conjugation>>:exchangingdotted

for undotted indices. Note that = 0, since ti-me algebrais so (3. 1) am-md not

sp(q). and that ti-me following componentsof torsion are determined by ti-me

vierbein

(Al) c’ - = I ‘. c’ c = I’ I
abc abc abc a,’!’ abc ad’

The non-zerocomponentsof ti-me connectionare

20ahc = (t c 1abc - (I c)ll + (I --

0abc = (I --- c)~bC.

amid conjugates.In this notation theexpressionfor the curvaturescalarbeconies

(A.2) R = _Oacl
0ac -— Oaca Oh>b + 2 e 0h~’+

dll 0c~-- cab 0ab + conj. terms.

Intermsoftandc,witht ‘=~ b ~a ab ab

R = — — (I-- c) ,ll (I - c)1ac + — (I--c) ~>(t cfdh +
2 a> a>
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—(t’—C’) (t_c~+2e(tP..CPf+_cb>(1~~c)ab,
a a 1 a

— ~bC (I — C)>ab — ~bC (t — c)~b + con/. terms.

Most of the tc crosstermscancel.An integrationby partsin theactiondensity

allows us to replacethe fourth term by — 2C’a (t’ - C’y~then time expression

for eR reducesto

(A.3) � ~ b~ac’~ b~ac +

2 ac b ac b

~ ~ab +~ C’~ —C tab +COfl/.~ab c a ab c

— e tb ~ac — tb ~c +

+ ~ t’> + conj. terms

Variation of OabC is tantamountto variation of
1b> and leads to tb> = 0.

Variation of amounts to variation of the symmetricpart ot
tabc and leads

to a constraint on the holonomy coefficients. This is becausethe bilinear part

of R is degenerate.Note that cabi = tab>, so that the constraint is covariant.

Constraintson the holonomy coefficients are familiar in superspaceformula-
tions of supergravity,but this is the first time that they have turnedrip in ordi-

nary gravity, as far as we know. The action density (A.3) is unsatisfactory,not

becauseit leads to constraintsbut becauseit fails to fix the components0abc

of the connection. The covariant way to fix these componentsis by making

the symmetricpart of tabc vanish.but we reject the option of doing so by hand.

The naturalremedyis to addtorsion terms.Let us replaceR by

(A.4) R’ = R + [p tabCt~ + q ~bc t
6b> + r ~bc ~

- + S t ,flb + COflj. terms I.

Variation of
0bc no longer leadsto a constrainton theholonomy coefficients

but insteadfixes thesecomponents,

(A.5) 0,ibc “~“ (C.h +C>~ba) + [(1 —p)/2(q +r)]ch~,

providedthat q + r * 0. Another way to write this is

t,ibc + tad = (I —p)/(q +r)ci,ca.

Substitutionof the variationalequationsbackinto R’ leads to
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1 1
R‘ = — <‘ ~‘ c ac —- — <, /, ,ac + c’ c’<’ + <‘ > ‘

-‘, a>’ ll a>’ I, <> a!>

+ [3(p I )2/4(q + rfl <all c~>,+ — )<j +r( ~<ccl> <b *

Is this theory equivalent to General Relativity? To fimid out, we expressti-me

holononiy coefficientsin term-mis of theCristoffel symbols.We find that theEinstein-

Hubertaction is recovered.provided that ti-me parameterssatisfy

(A.6) V p = 1. (q + r) )4s + I) + 3(1 p )8 = 9

Time possibility of a generalizationof ti-me minimal coupling corresponds1<

ti-me generalizationsti-mat are possible in the mi-more standardapproacim.

‘I’urning to supergravity, we i-mote ti-mat the expressions(3.19) am-md (5.5) are

formally equal once ti-me constraints c
1,’> = 0 are satisfied. ‘Time coefficients

arerelatedby

0ll>’_(v )bd,<,/i’> <~/i’>.(v/i’>) ,5ll<

— 2 <3’> ‘~‘a ‘ ~‘a — hc ~“a -

We found ti-mat ti-me action density eR is unsatisfactory in gravity becauses’a-

nation fails to fix ti-me conipoments
0~bc, andti-me sanieobjectionholdsin super-

gravity. Here too we can add torsion tern-ms. but now the requirenmentsof in-

variance are mi-more severe. The mi-most general bilinear scalar is a combimiation of

t.t and t’.t’, where

(A.7) ~, t = ~ab tllC taDC~

Capital indicestake 8 values; ta’~SthesupertracetB B,

At this point we run into a problem-mi ti-mat hasnot foumid a solutiom until now.

The expression(A.7). that mm’must be included in the action density in order ti-mat

ti-me variatiomial principle fix all ti-me conmponentsof ti-me Loremitz connectiomi,in-

troduces ti-me conipomiem’mt Ia/i>’ and through them-mm ti-me holomiomy coefficients
c/i>. This mi-means that ti-me action density no~vinvolves the vectorial vierbein c’,

absentf’roi’n time curvature scala.r and from the form-miuiatiomi of interactionswith

mi-matter. For ti-mis reasomi we are not enthusiasticabout adding torsion terms to

time actiom’m.and we I-mope find a mi-more satisfactoryway to fix time connectioncoeffi-

cients.

We do not expect to find n-much application for this formuiatiomi of General

Relativity, sim’mce diff’iculties are encounteredas soomi as one attcnmpts to usc

it in commniection witim fermimions. But the developmentsof ti-mis Sectiom <<‘ill he

usefullater, whemi we turn to supergravity-
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Remark, We return to the constraint CabC = 0 that one obtains when the

action density is simply eR.There is one casein which this may be acceptable.

Supposewe have a theory in which only the ~a’ but not the Q, areused;then

there is no needto fix the componentsq~~~>’of the connection.The vanishing

of Cabd means that the commutatorsof two Qa’S can be expressedwithout

bringing in the Q~’s.The covariant Klein-Gordonoperatormust be taken to be

defined as ~Qa (two terms) and the metric g<’~’= e’~” eai, is, formally’ degene-

rate. This theory is a useful model for supergravity. It makes little senseas a

classical field theory, but the quantizedmetric field is not necessarilyunreason-

able. It would be interesting to attempt a definition of the vierbein field as a

quantum field operator without vacuum expectation value, and recover the

vacuumexpectationvalue of themetricas a quantumanomaly.
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